Skip to main content
Log in

Phototropism in land plants: Molecules and mechanism from light perception to response

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

Phototropism is the response a plant exhibits when it is faced with a directional blue light stimulus. Though a seemingly simple differential cell elongation response within a responding tissue that results in organ curvature, phototropism is regulated through a complex set of signal perception and transduction events that move from the plasma membrane to the nucleus. In nature phototropism is one of several plant responses that have evolved to optimize photosynthesis and growth.

Objective

In the present work we will review the state of the field with respect to the molecules and mechanisms associated with phototropism in land plants.

Methods

A systematic literature search was done to identify relevant advances in the field. Though we tried to focus on literature within the past decade (1998-present), we have discussed and cited older literature where appropriate because of context or its significant impact to the present field. Several previous review articles are also cited where appropriate and readers should seek those out.

Results

A total of 199 articles are cited that fulfill the criteria listed above.

Conclusions

Though important numerous and significant advances have been made in our understanding of the molecular, biochemical, cell biological and physiologic mechanisms underlying phototropism in land plants over the past decade, there are many remaining unanswered questions. The future is indeed bright for researchers in the field and we look forward to the next decade worth of discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal C, Banaś A K, Kasprowicz-Maluśki A, Borghetti C, Łabuz J, Dobrucki J, Gabryś H (2014). Blue-light-activated phototropin2 trafficking from the cytoplasm to Golgi/post-Golgi vesicles. J Exp Bot, 65(12): 3263–3276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad M, Cashmore A R (1993). HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature, 366(6451): 162–166

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Jarillo J A, Cashmore A R, Ahmad M, Jarillo J A, Cashmore A R (1998). Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell, 10(2): 197–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Askinosie S (2016). Blue light- and ubiquitin-dependent influence on phototropin 1 abundance and movement at the plasma membrane. PhD Dissertation, University of Missouri-Columbia, pp. 161

    Google Scholar 

  • Babourina O, Godfrey L, Voltchanskii K (2004). Changes in ion fluxes during phototropic bending of etiolated oat coleoptiles. Ann Bot, 94(1): 187–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baum G, Long J C, Jenkins G I, Trewavas A J (1999). Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA, 96(23): 13554–13559

    Article  PubMed  CAS  Google Scholar 

  • Benjamins R, Ampudia C S, Hooykaas P J, Offringa R (2003). PINOIDmediated signaling involves calcium-binding proteins. Plant Physiol, 132(3): 1623–1630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett M J, Marchant A, Green H G, May S T, Sally P, Millner P A, Walker A R, Schulz B, Feldmann K A (1996). Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science, 273(5277), 948–950.

    Article  PubMed  CAS  Google Scholar 

  • Bennett S R M, Alvarez J, Bossinger G, Smyth D R (1995). Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J, 8(4): 505–520

    Article  CAS  Google Scholar 

  • Bennett T (2015). PIN proteins and the evolution of plant development. Trends Plant Sci, 20(8): 498–507

    Article  PubMed  CAS  Google Scholar 

  • Blakeslee J J, Bandyopadhyay A, Peer W A, Makam S N, Murphy A S (2004). Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol, 134(1): 28–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boer D R, Freire-Rios A, van den Berg W A M, Saaki T, Manfield I W, Kepinski S, López-Vidrieo I, Franco-Zorrilla J M, de Vries S C, Solano R, Weijers D, Coll M (2014). Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell, 156(3): 577–589

    Article  PubMed  CAS  Google Scholar 

  • Bögre L, Okrész L, Henriques R, Anthony R G (2003). Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci, 8(9): 424–431

    Article  PubMed  CAS  Google Scholar 

  • Borner G H H, Lilley K S, Stevens T J, Dupree P (2003). Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol, 132(2): 568–577

    PubMed  CAS  Google Scholar 

  • Briggs W R, Huala E (1999). Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol, 15(1): 33–62

    Article  PubMed  CAS  Google Scholar 

  • Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García J F, Bilbao-Castro J R, Robertson D L (2010). Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol, 153(3): 1398–1412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen L O, van der Horst G T, Batschauer A, Ahmad M (2011). The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol, 62(1): 335–364

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Hellmann H (2013). Plant E3 ligases: flexible enzymes in a sessile world. Mol Plant, 6(5): 1388–1404

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Qin G, Dai X, Zhao Y (2007). NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc Natl Acad Sci USA, 104(47): 18825–18829

    Article  PubMed  Google Scholar 

  • Cheng Y, Qin G, Dai X, Zhao Y (2008). NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proc Natl Acad Sci USA, 105(52): 21017–21022

    Article  PubMed  Google Scholar 

  • Cho M, Lee S H, Cho H T (2007). P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell, 19(12): 3930–3943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christensen S K, Dagenais N, Chory J, Weigel D (2000). Regulation of auxin response by the protein kinase PINOID. Cell, 100(4): 469–478

    Article  PubMed  CAS  Google Scholar 

  • Christie J M, Reymond P, Powell G K, Bernasconi P, Raibekas A A, Liscum E, Briggs W R (1998). Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science, 282(5394): 1698–1701

    Article  PubMed  CAS  Google Scholar 

  • Christie J M, Salomon M, Nozue K, Wada M, Briggs W R (1999). LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci USA, 96(15): 8779–8783

    Article  PubMed  CAS  Google Scholar 

  • Christie J M, Suetsugu N, Sullivan S, Wada M (2018). Shining light on the function of NPH3/RPT2-Like proteins in phototropin signalling. Plant Physiol, 176(2): 1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Christie J M, Yang H, Richter G L, Sullivan S, Thomson C E, Lin J, Titapiwatanakun B, Ennis M, Kaiserli E, Lee O R, Adamec J, PeerW A, Murphy A S (2011). phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol, 9(6): e1001076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clack T, Mathews S, Sharrock R A (1994). The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol, 25(3): 413–427

    Article  PubMed  CAS  Google Scholar 

  • Crosson S, Rajagopal S, Moffat K (2003). The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry, 42(1): 2–10

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1880). The Power of Movement in Plants. (London: John Murray Publishers).

    Google Scholar 

  • de Carbonnel M, Davis P, Roelfsema M R G, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C (2010). The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol, 152(3): 1391–1405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeBlasio S L, Mullen J L, Luesse D R, Hangarter R P (2003). Phytochrome modulation of blue light-induced chloroplast movements in Arabidopsis. Plant Physiol, 133(4): 1471–1479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demarsy E, Schepens I, Okajima K, Hersch M, Bergmann S, Christie J, Shimazaki K, Tokutomi S, Fankhauser C (2012). Phytochrome Kinase Substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J, 31(16): 3457–3467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deshaies R J, Joazeiro C A (2009). RING domain E3 ubiquitin ligases. Annu Rev Biochem, 78(1): 399–434

    Article  PubMed  CAS  Google Scholar 

  • Dezfulian M H, Jalili E, Roberto D K A, Moss B L, Khoo K, Nemhauser J L, Crosby W L (2016). Oligomerization of SCFTIR1 is essential for Aux/IAA degradation and auxin signaling in Arabidopsis. PLoS Genet, 12(9): e1006301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding Z, Galván-Ampudia C S, Demarsy E, Langowski L, Kleine-Vehn J, Fan Y, Morita M T, Tasaka M, Fankhauser C, Offringa R, Friml J (2011). Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol, 13(4): 447–452

    Article  PubMed  CAS  Google Scholar 

  • Doherty G J, McMahon H T (2009). Mechanisms of endocytosis. Annu Rev Biochem, 78(1): 857–902

    Article  PubMed  CAS  Google Scholar 

  • Dümmer M, Michalski C, Essen L O, Rath M, Galland P, Forreiter C (2016). EHB1 and AGD12, two calcium-dependent proteins affect gravitropism antagonistically in Arabidopsis thaliana. J Plant Physiol, 206: 114–124

    Article  PubMed  CAS  Google Scholar 

  • Esmon C A, Tinsley A G, Ljung K, Sandberg G, Hearne L B, Liscum E (2006). A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA, 103(1): 236–241

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser C (2001). The phytochromes, a family of red/far-red absorbing photoreceptors. J Biol Chem, 276(15): 11453–11456

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser C, Yeh K C, Lagarias J C, Zhang H, Elich T D, Chory J (1999). PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science, 284(5419): 1539–1541

    Article  PubMed  CAS  Google Scholar 

  • Felle H (1988). Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta, 174(4): 495–499

    Article  PubMed  CAS  Google Scholar 

  • Figueroa P, Gusmaroli G, Serino G, Habashi J, Ma L, Shen Y, Feng S, Bostick M, Callis J, Hellmann H, Deng X W (2005). Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. Plant Cell, 17(4): 1180–1195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folta K M, Lieg E J, Durham T, Spalding E P (2003). Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol, 133(4): 1464–1470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franklin K A, Quail P H (2010). Phytochrome functions in Arabidopsis development. J Exp Bot, 61(1): 11–24

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Wisniewska J, Benková E, Mendgen K, Palme K (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415(6873): 806–809

    Article  PubMed  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk P B, Ljung K, Sandberg G, Hooykaas P J, Palme K, Offringa R (2004). A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science, 306(5697): 862–865

    Article  PubMed  CAS  Google Scholar 

  • Furutani M, Kajiwara T, Kato T, Treml B S, Stockum C, Torres-Ruiz R A, Tasaka M (2007). The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level. Development, 134(21): 3849–3859

    Article  PubMed  CAS  Google Scholar 

  • Gehring C A, Williams D A, Cody S H, Parish R W (1990). Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium. Nature, 345(6275): 528–530

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003b). The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell, 112(2): 219–230

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz R A, Mayer U, Jürgens G (2004a). Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development, 131(2): 389–400

    Article  PubMed  CAS  Google Scholar 

  • Genschik P, Sumara I, Lechner E (2013). The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J, 32(17): 2307–2320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grones P, Friml J (2015). Auxin transporters and binding proteins at a glance. J Cell Sci, 128(1): 1–7

    Article  PubMed  CAS  Google Scholar 

  • Grunewald W, Friml J (2010). The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J, 29(16): 2700–2714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guilfoyle T J (2015). The PB1 domain in auxin response factor and Aux/IAA proteins: a versatile protein interaction module in the auxin response. Plant Cell, 27(1): 33–43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ha C M, Jun J H, Fletcher J C (2010). Shoot apical meristem form and function. Curr Top Dev Biol, 91(C): 103–140

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Frank L, Kimura T, Schwechheimer C, Sakai T (2018). Roles of AGCVIII kinases in the hypocotyl phototropism of Arabidopsis seedlings. Plant Cell Physiol, 59(5): 1060–1071

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Takano M, Neumann R, Iino M (2005). The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell, 17(1): 103–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haga K, Tsuchida-Mayama T, Yamada M, Sakai T (2015). Arabidopsis ROOT PHOTOTROPISM2 contributes to the adaptation to highintensity light in phototropic responses. Plant Cell, 27(4): 1098–1112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haglund K, Dikic I (2005). Ubiquitylation and cell signaling. EMBO J, 24(19): 3353–3359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han I S, Cho H Y, Moni A, Lee A Y, Briggs W R (2013). Investigations on the photoregulation of chloroplast movement and leaf positioning in Arabidopsis. Plant Cell Physiol, 54(1): 48–56

    Article  PubMed  CAS  Google Scholar 

  • Han I S, Tseng T S, Eisinger W, Briggs W R (2008). Phytochrome A regulates the intracellular distribution of phototropin 1-green fluorescent protein in Arabidopsis thaliana. Plant Cell, 20(10): 2835–2847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han M, Park Y, Kim I, Kim E H, Yu T K, Rhee S, Suh J Y (2014). Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17. Proc Natl Acad Sci USA, 111(52): 18613–18618

    Article  PubMed  CAS  Google Scholar 

  • Harada A, Sakai T, Okada K (2003). Phot1 and phot2 mediate blue lightinduced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci USA, 100(14): 8583–8588

    Article  PubMed  CAS  Google Scholar 

  • Harada A, Shimazaki K (2007). Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol, 83(1): 102–111

    Article  PubMed  CAS  Google Scholar 

  • Harada A, Takemiya A, Inoue S, Sakai T, Shimazaki K (2013). Role of RPT2 in leaf positioning and flattening and a possible inhibition of phot2 signaling by phot1. Plant Cell Physiol, 54(1): 36–47

    Article  PubMed  CAS  Google Scholar 

  • Harper R M, Stowe-Evans E L, Luesse D R, Muto H, Tatematsu K, Watahiki M K, Yamamoto K, Liscum E (2000). The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 12(5): 757–770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harper S M, Christie J M, Gardner K H (2004). Disruption of the LOVJalpha helix interaction activates phototropin kinase activity. Biochemistry, 43(51): 16184–16192

    Article  PubMed  CAS  Google Scholar 

  • Holland J J, Roberts D, Liscum E (2009). Understanding phototropism: from Darwin to today. J Exp Bot, 60(7): 1969–1978

    Article  PubMed  CAS  Google Scholar 

  • Hotton S K, Callis J (2008). Regulation of cullin RING ligases. Annu Rev Plant Biol, 59(1): 467–489

    Article  PubMed  CAS  Google Scholar 

  • Huala E, Oeller P W, Liscum E, Han I S, Larsen E, Briggs W R (1997). Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science, 278(5346): 2120–2123

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Zago M K, Abas L, van Marion A, Galván-Ampudia C S, Offringa R (2010). Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell, 22(4): 1129–1142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes J (2013). Phytochrome cytoplasmic signaling. Annu Rev Plant Biol, 64(1): 377–402

    Article  PubMed  CAS  Google Scholar 

  • Inada S, Ohgishi M, Mayama T, Okada K, Sakai T (2004). RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell, 16(4): 887–896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue S, Kinoshita T, Matsumoto M, Nakayama K I, Doi M, Shimazaki K (2008). Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA, 105(14): 5626–5631

    Article  PubMed  Google Scholar 

  • Inoue S, Kinoshita T, Takemiya A, Doi M, Shimazaki K (2008). Leaf positioning of Arabidopsis in response to blue light. Mol Plant, 1(1): 15–26

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Matsushita T, Tomokiyo Y, Matsumoto M, Nakayama K I, Kinoshita T, Shimazaki K (2011). Functional analyses of the activation loop of phototropin2 in Arabidopsis. Plant Physiol, 156(1): 117–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaedicke K, Lichtenthäler A L, Meyberg R, Zeidler M, Hughes J (2012). A phytochrome-phototropin light signaling complex at the plasma membrane. Proc Natl Acad Sci USA, 109(30): 12231–12236

    Article  PubMed  Google Scholar 

  • Janoudi A K, Gordon W R, Wagner D, Quail P, Poff K L (1997). Multiple phytochromes are involved in red-light-induced enhancement of first-positive phototropism in Arabidopsis thaliana. Plant Physiol, 113(3): 975–979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janoudi A K, Poff K L (1993). Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana. Plant Physiol, 101(101): 1175–1180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janoudi A-K, Konjevic R, Apel P, Poff K L (1992). Time threshold for second positive phototropism is decreased by a preirradiation with red light. Plant Physiol, 99(4): 1422–1425

    Article  CAS  Google Scholar 

  • Jarillo J A, Gabrys H, Capel J, Alonso J M, Ecker J R, Cashmore A R (2001). Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature, 410(6831): 952–954

    Article  PubMed  CAS  Google Scholar 

  • Jones M A, Feeney K A, Kelly S M, Christie J M (2007). Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission. J Biol Chem, 282(9): 6405–6414

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001). Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science, 291(5511): 2138–2141

    Article  PubMed  CAS  Google Scholar 

  • Kaiserli E, Sullivan S, Jones M A, Feeney K A, Christie J M (2009). Domain swapping to assess the mechanistic basis of Arabidopsis phototropin 1 receptor kinase activation and endocytosis by blue light. Plant Cell, 21(10): 3226–3244

    Article  PubMed  PubMed Central  Google Scholar 

  • Kami C, Allenbach L, Zourelidou M, Ljung K, Schütz F, Isono E, Watahiki M K, Yamamoto K T, Schwechheimer C, Fankhauser C (2014). Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. Plant J, 77(3): 393–403

    Article  PubMed  CAS  Google Scholar 

  • Kami C, Hersch M, Trevisan M, Genoud T, Hiltbrunner A, Bergmann S, Fankhauser C (2012). Nuclear phytochrome A signaling promotes phototropism in Arabidopsis. Plant Cell, 24(2): 566–576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010). Light-regulated plant growth and development. Curr Top Dev Biol, 91: 29–66

    Article  PubMed  CAS  Google Scholar 

  • Kansup J, Tsugama D, Liu S, Takano T (2014). Arabidopsis G-protein ß subunit AGB1 interacts with NPH3 and is involved in phototropism. Biochem Biophys Res Commun, 445(1): 54–57

    Article  PubMed  CAS  Google Scholar 

  • Khurana J P, Poff K L (1989). Mutants of Arabidopsis thaliana with altered phototropism. Planta, 178(3), 400–406.

    Article  PubMed  Google Scholar 

  • Kim J, Harter K, Theologis A (1997). Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA, 94(22): 11786–11791

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001). Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature, 414(6864): 656–660

    Article  PubMed  CAS  Google Scholar 

  • Knauer T, Dümmer M, Landgraf F, Forreiter C (2011). A negative effector of blue light-induced and gravitropic bending in Arabidopsis. Plant Physiol, 156(1): 439–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong S G, Kagawa T, Wada M, Nagatani A (2013a). A C-terminal membrane association domain of phototropin 2 is necessary for chloroplast movement. Plant Cell Physiol, 54(1): 57–68

    Article  PubMed  CAS  Google Scholar 

  • Kong S G, Kinoshita T, Shimazaki K, Mochizuki N, Suzuki T, Nagatani A (2007). The C-terminal kinase fragment of Arabidopsis phototropin 2 triggers constitutive phototropin responses. Plant J, 51(5): 862–873

    Article  PubMed  CAS  Google Scholar 

  • Kong S G, Suetsugu N, Kikuchi S, Nakai M, Nagatani A, Wada M (2013b). Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity. Plant Cell Physiol, 54(1): 80–92

    Article  PubMed  CAS  Google Scholar 

  • Kong S G, Suzuki T, Tamura K, Mochizuki N, Hara-Nishimura I, Nagatani A (2006). Blue light-induced association of phototropin 2 with the Golgi apparatus. Plant J, 45(6): 994–1005

    Article  PubMed  CAS  Google Scholar 

  • Korasick D A, Westfall C S, Lee S G, Nanao M H, Dumas R, Hagen G, Strader L C (2014). Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proc Nat Acad Sci, 111(14), 5427–5432

    Article  PubMed  CAS  Google Scholar 

  • Kozuka T, Suetsugu N, Wada M, Nagatani A (2013). Antagonistic regulation of leaf flattening by phytochrome B and phototropin in Arabidopsis thaliana. Plant Cell Physiol, 54(1): 69–79

    Article  PubMed  CAS  Google Scholar 

  • Lalanne E, Michaelidis C, Moore J M, Gagliano W, Johnson A, Patel R, Howden R, Vielle-Calzada J P, Grossniklaus U, Twell D (2004). Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics, 167(4): 1975–1986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lariguet P, Boccalandro H E, Alonso J M, Ecker J R, Chory J, Casal J J, Fankhauser C (2003). A growth regulatory loop that provides homeostasis to phytochrome a signaling. Plant Cell, 15(12): 2966–2978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lariguet P, Dunand C (2005). Plant photoreceptors: phylogenetic overview. J Mol Evol, 61(4): 559–569

    Article  PubMed  CAS  Google Scholar 

  • Lariguet P, Fankhauser C (2004). Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism. Plant J, 40(5): 826–834

    Article  PubMed  CAS  Google Scholar 

  • Lariguet P, Schepens I, Hodgson D, Pedmale U V, Trevisan M, Kami C, Liscum E (2006). PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proc Nat Acad Sci, 103(26), 10134–10139

    Article  PubMed  CAS  Google Scholar 

  • Lascève G, Leymarie J, Olney M A, Liscum E, Christie J M, Vavasseur A, Briggs W R (1999). Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. Plant Physiol, 120(2): 605–614

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavy M, Estelle M (2016). Mechanisms of auxin signaling. Development, 143(18): 3226–3229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee S, Lee S, Yang K Y, Kim Y M, Park S Y, Kim S Y, Soh M S (2006). Overexpression of PRE1 and its homologous genes activates Gibberellin-dependent responses in Arabidopsis thaliana. Plant Cell Physiol, 47(5): 591–600

    Article  PubMed  CAS  Google Scholar 

  • Lewis D R, Miller N D, Splitt B L, Wu G, Spalding E P (2007). Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell, 19(6): 1838–1850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li F W, Rothfels C J, Melkonian M, Villarreal J C, Stevenson D W, Graham S W, Wong G K, Mathews S, Pryer K M (2015). The origin and evolution of phototropins. Front Plant Sci, 6: 637

    PubMed  PubMed Central  Google Scholar 

  • Li J, Dai X, Zhao Y (2006). A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiol, 140(3): 899–908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Dai X, Cheng Y, Zhao Y (2011). NPY genes play an essential role in root gravitropic responses in Arabidopsis. Mol Plant, 4(1): 171–179

    Article  PubMed  CAS  Google Scholar 

  • Lindeboom J J, Nakamura M, Hibbel A, Shundyak K, Gutierrez R, Ketelaar T, Emons A M, Mulder B M, Kirik V, Ehrhardt DW(2013). A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science, 342(6163): 1245533

    Article  PubMed  CAS  Google Scholar 

  • Liscum E (2016). Blue light-induced intracellular movement of phototropins: Functional relevance or red herring? Front Plant Sci, 7: 827

    Article  PubMed  PubMed Central  Google Scholar 

  • Liscum E, Askinosie S K, Leuchtman D L, Morrow J, Willenburg K T, Coats D R (2014). Phototropism: growing towards an understanding of plant movement. Plant Cell, 26(1): 38–55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liscum E, Briggs W R (1995). Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell, 7(4): 473–485

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liscum E, Briggs W R (1996). Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol, 112(1): 291–296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liscum E, Reed J W (2002). Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol, 49(3–4): 387–400

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Yang Z, Gomez A, Liu B, Lin C, Oka Y (2016). Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. J Plant Res, 129(2): 137–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mara C D, Huang T, Irish V F (2010). The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. Plant Cell, 22(3): 690–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McSteen P (2010). Auxin and monocot development. Cold Spring Harb Perspect Biol, 2(3): a001479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michalski C, Dümmer M, Galland P, Forreiter C (2017). Impact of EHB1 and AGD12 on root and hypocotyl phototropism in Arabidopsis thaliana. J Plant Growth Regul, 36(3): 660–668

    Article  CAS  Google Scholar 

  • Motchoulski A, Liscum E (1999). Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science, 286(5441): 961–964

    Article  PubMed  CAS  Google Scholar 

  • Nagashima A, Suzuki G, Uehara Y, Saji K, Furukawa T, Koshiba T, Sekimoto M, Fujioka S, Kuroha T, Kojima M, Sakakibara H, Fujisawa N, Okada K, Sakai T (2008). Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. Plant J, 53(3): 516–529

    Article  PubMed  CAS  Google Scholar 

  • Nakasako M, Zikihara K, Matsuoka D, Katsura H, Tokutomi S (2008). Structural basis of the LOV1 dimerization of Arabidopsis phototropins 1 and 2. J Mol Biol, 381(3): 718–733

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa M, Yabe N, Ichikawa T, Yamamoto Y Y, Yoshizumi T, Hasunuma K, Matsui M (2001). DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J, 25(2): 213–221

    Article  PubMed  CAS  Google Scholar 

  • Noh B, Bandyopadhyay A, Peer W A, Spalding E P, Murphy A S (2003). Enhanced gravi-and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature, 423(6943): 999–1002

    Article  PubMed  CAS  Google Scholar 

  • Nozue K, Kanegae T, Imaizumi T, Fukuda S, Okamoto H, Yeh K C, Lagarias J C, Wada M (1998). A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc Natl Acad Sci USA, 95(26): 15826–15830

    Article  PubMed  CAS  Google Scholar 

  • Ohgishi M, Saji K, Okada K, Sakai T (2004). Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA, 101(8): 2223–2228

    Article  PubMed  CAS  Google Scholar 

  • Okadaa K, Shimuraab Y (1992). Mutational analysis of root gravitropism and phototropism of Arabidopsis thaliana seedlings. Aust J Plant Physiol, 19(4): 439–448

    Google Scholar 

  • Okushima Y, Overvoorde P J, Arima K, Alonso J M, Chan A, Chang C, Ecker J R, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005). Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell, 17(2): 444–463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park J E, Seo P J, Lee A K, Jung J H, Kim Y S, Park C M (2007). An Arabidopsis GH3 gene, encoding an auxin-conjugating enzyme, mediates phytochrome B-regulated light signals in hypocotyl growth. Plant Cell Physiol, 48(8): 1236–1241

    Article  PubMed  CAS  Google Scholar 

  • Park J Y, Kim H J, Kim J (2002). Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system. Plant J, 32(5): 669–683

    Article  PubMed  CAS  Google Scholar 

  • Parks B M, Quail P H, Hangarter R P (1996). Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis. Plant Physiol, 110(1): 155–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett M J (2001). Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J, 25(4): 399–406

    Article  PubMed  CAS  Google Scholar 

  • Pedmale U V, Celaya R B, Liscum E (2002). Phototropism: Mechanisms and outcomes. The Arabidopsis Book, 8(8)

  • Pedmale U V, Liscum E (2007). Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem, 282(27): 19992–20001

    Article  PubMed  CAS  Google Scholar 

  • Peer W A, Blakeslee J J, Yang H, Murphy A S (2011). Seven things we think we know about auxin transport. Mol Plant, 4(3): 487–504

    Article  PubMed  CAS  Google Scholar 

  • Petricka J J, Clay N K, Nelson T M (2008). Vein patterning screens and the defectively organized tributaries mutants in Arabidopsis thaliana. Plant J, 56(2): 251–263

    Article  PubMed  CAS  Google Scholar 

  • Pires N, Dolan L (2010). Origin and diversification of basic-helix-loophelix proteins in plants. Mol Biol Evol, 27(4): 862–874

    Article  PubMed  Google Scholar 

  • Preuten T, Blackwood L, Christie J M, Fankhauser C (2015). Lipid anchoring of Arabidopsis phototropin 1 to assess the functional significance of receptor internalization: should I stay or should I go? New Phytol, 206(3): 1038–1050

    Article  PubMed  CAS  Google Scholar 

  • Rademacher E H, Offringa R (2012). Evolutionary adaptations of plant AGC kinases: From light signaling to cell polarity regulation. Front Plant Sci, 3: 250

    Article  PubMed  PubMed Central  Google Scholar 

  • Rayle D L, Cleland R (1970). Enhancement of wall loosening and elongation by Acid solutions. Plant Physiol, 46(2): 250–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rayle D L, Cleland R E (1992). The Acid Growth Theory of auxininduced cell elongation is alive and well. Plant Physiol, 99(4): 1271–1274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren H, Gray W M (2015). SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol Plant, 8(8): 1153–1164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberts D, Pedmale U V, Morrow J, Sachdev S, Lechner E, Tang X, Zheng N, Hannink M, Genschik P, Liscum E (2011). Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-Ring E3 ubiquitin ligase CRL3(NPH3). Plant Cell, 23(10): 3627–3640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rockwell N C, Su Y S, Lagarias J C (2006). Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol, 57(26): 837–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez L, Gonzalez-Guzman M, Diaz M, Rodrigues A, Izquierdo-Garcia A C, Peirats-Llobet M, Fernandez M A, Antoni R, Fernandez D, Marquez J A, Mulet J M, Albert A, Rodriguez P L (2014). C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis. Plant Cell, 26(12): 4802–4820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rojas-Pirela M, Rigden D J, Michels P A, Cáceres A J, Concepción J L, Quiñones W (2018). Structure and function of Per-ARNT-Sim domains and their possible role in the life-cycle biology of Trypanosoma cruzi. Mol Biochem Parasitol, 219: 52–66

    Article  PubMed  CAS  Google Scholar 

  • Rösler J, Klein I, Zeidler M (2007). Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A. Proc Natl Acad Sci USA, 104(25): 10737–10742

    Article  PubMed  CAS  Google Scholar 

  • Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Muday G, Estelle M (1997). Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell, 9(5): 745–757

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz T E, Christie J M, Briggs W R, Okada K (2001). Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Pro Nat Acad Sci, 98(12), 6969–6974

    Article  CAS  Google Scholar 

  • Sakai T, Wada T, Ishiguro S, Okada K (2000). RPT2. A signal transducer of the phototropic response in Arabidopsis. Plant Cell, 12(2): 225–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto K, Briggs W R (2002). Cellular and subcellular localization of phototropin 1. Plant Cell, 14(8): 1723–1735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salomon M, Christie J M, Knieb E, Lempert U, Briggs W R (2000). Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry, 39(31): 9401–9410

    Article  PubMed  CAS  Google Scholar 

  • Salomon M, Lempert U, Rüdiger W (2004). Dimerization of the plant photoreceptor phototropin is probably mediated by the LOV1 domain. FEBS Lett, 572(1–3): 8–10

    Article  PubMed  CAS  Google Scholar 

  • Sampedro J, Cosgrove D J (2005). The expansin superfamily. Genome Biol, 6(12): 242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sancar A (2004). Photolyase and cryptochrome blue-light photoreceptors. Adv Protein Chem, 69: 73–100

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper J F (2002). Calcium at the crossroads of signaling. Plant Cell, 14(Suppl): S401–S417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santner A A, Watson J C (2006). The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis. Plant J, 45(5): 752–764

    Article  PubMed  CAS  Google Scholar 

  • Sauer M, Kleine-Vehn J (2011). AUXIN BINDING PROTEIN1: the outsider. Plant Cell, 23(6): 2033–2043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawa S, Ohgishi M, Goda H, Higuchi K, Shimada Y, Yoshida S, Koshiba T (2002). The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis. Plant J, 32(6): 1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Schepens I, Boccalandro H E, Kami C, Casal J J, Fankhauser C (2008). PHYTOCHROME KINASE SUBSTRATE4 modulates phytochrome-mediated control of hypocotyl growth orientation. Plant Physiol, 147(2): 661–671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scherer G F (2011). AUXIN-BINDING-PROTEIN1, the second auxin receptor: what is the significance of a two-receptor concept in plant signal transduction? J Exp Bot, 62: 3339–3357

    Article  PubMed  CAS  Google Scholar 

  • Schumacher P, Demarsy E, Waridel P, Petrolati L A, Trevisan M, Fankhauser C (2018). A phosphorylation switch turns a positive regulator of phototropism into an inhibitor of the process. Nat Commun, 9(1): 2403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Staswick P E, Serban B, Rowe M, Tiryaki I, Maldonado M T, Maldonado M C, SuzaW (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell, 17(2): 616–627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stogios P J, Downs G S, Jauhal J J S, Nandra S K, Privé G G (2005). Sequence and structural analysis of BTB domain proteins. Genome Biol, 6(10): R82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stone B B, Stowe-Evans E L, Harper R M, Celaya R B, Ljung K, Sandberg G, Liscum E (2008). Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant, 1(1): 129–144

    Article  PubMed  CAS  Google Scholar 

  • Stowe-Evans E L, Harper R M, Motchoulski A V, Liscum E (1998). NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis. Plant Physiol, 118(4): 1265–1275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stowe-Evans E L, Luesse D R, Liscum E (2001). The enhancement of phototropin-induced phototropic curvature in Arabidopsis occurs via a photoreversible phytochrome A-dependent modulation of auxin responsiveness. Plant Physiol, 126(2): 826–834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strader L C, Zhao Y (2016). Auxin perception and downstream events. Curr Opin Plant Biol, 33: 8–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suetsugu N, Mittmann F, Wagner G, Hughes J, Wada M (2005). A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc Natl Acad Sci USA, 102(38): 13705–13709

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu N, Takemiya A, Kong S G, Higa T, Komatsu A, Shimazaki K, Kohchi T, Wada M (2016). RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proc Natl Acad Sci USA, 113(37): 10424–10429

    Article  PubMed  CAS  Google Scholar 

  • Sullivan S, Hart J E, Rasch P, Walker C H, Christie J M (2016). Phytochrome A mediates blue-light enhancement of second-positive phototropism in Arabidopsis. Front Plant Sci, 7: 290

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan S, Kaiserli E, Tseng T S, Christie J M (2010). Subcellular localization and turnover of Arabidopsis phototropin 1. Plant Signal Behav, 5(2): 184–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sullivan S, Thomson C E, Lamont D J, Jones M A, Christie J M (2008). In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototropin 1. Mol Plant, 1(1): 178–194

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Qi L, Li Y, Zhai Q, Li C (2013). PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell, 25, 2102–2114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takemiya A, Inoue S, Doi M, Kinoshita T, Shimazaki K (2005). Phototropins promote plant growth in response to blue light in low light environments. Plant Cell, 17(4): 1120–1127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki M K, Harper R M, Liscum E, Yamamoto K T (2004). MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell, 16(2): 379–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomann A, Lechner E, Hansen M, Dumbliauskas E, Parmentier Y, Kieber J, Scheres B, Genschik P (2009). Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and-independent mechanisms. PLoS Genet, 5(1): e1000328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Titapiwatanakun B, Blakeslee J J, Bandyopadhyay A, Yang H, Mravec J, Sauer M, Cheng Y, Adamec J, Nagashima A, Geisler M, Sakai T, Friml J, Peer W A, Murphy A S (2009). ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J, 57(1): 27–44

    Article  PubMed  CAS  Google Scholar 

  • Tokutomi S, Matsuoka D, Zikihara K (2008). Molecular structure and regulation of phototropin kinase by blue light. Biochim Biophys Acta, 1784(1): 133–142

    Article  PubMed  CAS  Google Scholar 

  • Treml B S, Winderl S, Radykewicz R, Herz M, Schweizer G, Hutzler P, Glawischnig E, Ruiz R A (2005). The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development, 132(18): 4063–4074

    Article  PubMed  CAS  Google Scholar 

  • Tseng T S, Briggs W R (2010). The Arabidopsis rcn1-1 mutation impairs dephosphorylation of Phot2, resulting in enhanced blue light responses. Plant Cell, 22(2): 392–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuchida-Mayama T, Nakano M, Uehara Y, Sano M, Fujisawa N, Okada K, Sakai T (2008). Mapping of the phosphorylation sites on the phototropic signal transducer, NPH3. Plant Sci, 174(6): 626–633

    Article  CAS  Google Scholar 

  • Tsuchida-Mayama T, Sakai T, Hanada A, Uehara Y, Asami T, Yamaguchi S (2010). Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant J, 62(4): 653–662

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle T J (1997). ARF1, a transcription factor that binds to auxin response elements. Science, 276(5320), 1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Urano D, Chen J G, Botella J R, Jones A M (2013). Heterotrimeric G protein signalling in the plant kingdom. Open Biol, 3(3): 120186–120186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan Y, Jasik J, Wang L, Hao H, Volkmann D, Menzel D, Mancuso S, Baluška F, Lin J (2012). The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell, 24(2): 551–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan Y L, Eisinger W, Ehrhardt D, Kubitscheck U, Baluska F, Briggs W (2008). The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. Mol Plant, 1(1): 103–117

    Article  PubMed  CAS  Google Scholar 

  • Watahiki M K, Yamamoto K T (1997). The massugu1 mutation of Arabidopsis identified with failure of auxin-induced growth curvature of hypocotyl confers auxin insensitivity to hypocotyl and leaf. Plant Physiol, 115(2): 419–426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Went, F. W., and Thimann, K. V. (1937). Phytohormones.

    Google Scholar 

  • Westfall C S, Herrmann J, Chen Q, Wang S, Jez J M (2010). Modulating plant hormones by enzyme action: the GH3 family of acyl acid amido synthetases. Plant Signal Behav, 5(12): 1607–1612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whippo C W, Hangarter R P (2003). Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes. Plant Physiol, 132(3): 1499–1507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whippo C W, Hangarter R P (2004). Phytochrome modulation of blue-light-induced phototropism. Plant Cell Environ, 27(10): 1223–1228

    Article  CAS  Google Scholar 

  • Willige B C, Ahlers S, Zourelidou M, Barbosa I C R, Demarsy E, Trevisan M, Davis P A, Roelfsema M R, Hangarter R, Fankhauser C, Schwechheimer C (2013). D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. Plant Cell, 25(5): 1674–1688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woo O G, Kim S H, Cho S K, Kim S H, Lee H N, Chung T, Yang S W, Lee J H (2018). BPH1, a novel substrate receptor of CRL3, plays a repressive role in ABA signal transduction. Plant Mol Biol, 96(6): 593–606

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Xing J, Wan Y, Lv X, Fan L, Zhang Y, Song K, Wang L, Wang X, Deng X, Baluška F, Christie J M, Lin J (2018). Arabidopsis blue light receptor phototropin 1 undergoes blue light-induced activation in membrane microdomains. Mol Plant, 11(6): 846–859

    Article  PubMed  CAS  Google Scholar 

  • Zazímalová E, Murphy A S, Yang H, Hoyerová K, Hosek P (2010). Auxin transporters–why so many? Cold Spring Harb Perspect Biol, 2(3): a001552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Du L, Shen C, Yang Y, Poovaiah B W (2014). Regulation of plant immunity through ubiquitin-mediated modulation of Ca(2 +) - calmodulin-AtSR1/CAMTA3 signaling. Plant J, 78(2): 269–281

    Article  PubMed  CAS  Google Scholar 

  • Zhang X S, O’Neill S D (1993). Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell, 5(4): 403–418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X, Wang Y L, Qiao X R, Wang J, Wang L D, Xu C S, Zhang X (2013). Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. Plant Physiol, 162(3): 1539–1551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y (2010). Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol, 61(1): 49–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zourelidou M, Müller I, Willige B C, Nill C, Jikumaru Y, Li H, Schwechheimer C (2009). The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana. Development, 136(4): 627–636

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Research in the Liscum laboratory is supported by the National Science Foundation (IOS-1146142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Liscum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrow, J., Willenburg, K.T. & Liscum, E. Phototropism in land plants: Molecules and mechanism from light perception to response. Front. Biol. 13, 342–357 (2018). https://doi.org/10.1007/s11515-018-1518-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-018-1518-y

Keywords

Navigation