Frontiers in Biology

, Volume 13, Issue 1, pp 56–62 | Cite as

Invulnerability of bromelain against oxidative degeneration and cholinergic deficits imposed by dichlorvos in mice brains

  • Bharti Chaudhary
  • Sonam Agarwal
  • Renu Bist
Research Article



The present study elucidates the protective potential of bromelain against dichlorvos intoxication in mice brains. Dichlorvos induces the oxidative stress by disproportionating the balance between free radicals generation and their scavenging in neurons which leads to neuronal degeneration.


In this study, mice were divided into four groups-group I (control), group II (dichlorvos treated), group III (bromelain treated) and group IV (exposed to both bromelain and dichlorvos both).


Dichlorvos treatment increased the levels of thiobarbituric acid reactive substances (TBARS) and protein carbonyl content (PCC) which indicate the increased oxidative stress. Meanwhile, brain endogenous antioxidants and cholinesterases level was decreased after dichlorvos exposure. Levels of TBARS and PCC decreased whereas cholinesterases level was recorded to be elevated after bromelain exposure.


Bromelain offered neuroprotection by decreasing oxidative stress and augmenting cholinesterases in mice brains. This study highlights the invulnerability of bromelain against oxidative and cholinergic deficits in mice brains.


oxidative stress dichlorvos bromelain neuroprotection neurotransmitter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Banasthali University and Department of Science and Technology (DST), India for providing the facilities for present investigation.


  1. Abdelsalam E B (1999). Neurotoxic potential of six organophosphorus compounds in adult hens. Vet Hum Toxicol. 141(5): 290–292Google Scholar
  2. Agency for Toxic Substances and Disease Registry (ATSDR) Richte P, Corcoran J (1997). Toxicological Profile for Dichlorvos. Agency for Toxic Substances and Disease Registry, Atlanta, USAGoogle Scholar
  3. Assis C R, Amaral I P, Castro P F, Carvalho L B, Bezerra R S (2007). Effect of dichlorvos on the acetylcholinesterase from tambaqui (Colossoma macropomum) brain. Environ Toxicol Chem, 26(7): 1451–1453CrossRefPubMedGoogle Scholar
  4. Assis C R, Linhares A G, Oliveira V M, França R C, Carvalho E V, Bezerra R S, de Carvalho L B Jr (2012). Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Sci Total Environ, 441: 141–150CrossRefPubMedGoogle Scholar
  5. Atanasov V N, Petrova I, Dishovsky C (2013). In vitro investigation of efficacy of new reactivators on OPC inhibited rat brain acetylcholinesterase. Chem Biol Interact, 203(1): 139–143CrossRefPubMedGoogle Scholar
  6. Bhattacharyya B K (2008). Bromelain: an overview. Nat Prod Rad, 7(4): 359–363Google Scholar
  7. Binukumar B K, Bal A, Kandimalla R J L, Gill K D (2010). Nigrostriatal neuronal death following chronic dichlorvos exposure: crosstalk between mitochondrial impairments, a synuclein aggregation, oxidative damage and behavioral changes. Mol Brain, 3(35): 35PubMedGoogle Scholar
  8. Cankayali I, Demirag K, Eris O, Ersoz B, Moral A R (2005). The effects of N-acetylcysteine on oxidative stress in organophosphate poisoning model. Adv Ther, 22(2): 107–116CrossRefPubMedGoogle Scholar
  9. Carod-Artal F J, Speck-Martins C (1999). [Late onset polyneuropathy due to exposure to organophosphates]. Rev Neurol, 29(2): 123–127PubMedGoogle Scholar
  10. Celik I, Yilmaz Z, Turkoglu V (2009). Hematotoxic and hepatotoxic effects of dichlorvos at sublethal dosages in rats. Environ Toxicol, 24 (2): 128–132CrossRefPubMedGoogle Scholar
  11. Chandler D S, Mynott T L (1998). Bromelain protects piglets from diarrhoea caused by oral challenge with K88 positive enterotoxigenic Escherichia coli. Gut, 43(2): 196–202CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chaudhary B, Agrawal S, Bist R (2014). Obliteration in Oxidative Stress and Ca ++ Uptake in Brain Mitochondria Leads to Impairment of Cholinergic System: A Possible Mechanism Underlying Neurotoxicity Induced by Dichlorvos. BBB, 2: 550–564Google Scholar
  13. Choudhary S, Raheja G, Gupta V, Gill K D (2002). Possible involvement of dopaminergic neurotransmitter system in dichlorvos induced delayed neurotoxicity. J Biochem Mol Biol Biophys, 6(1): 29–36CrossRefPubMedGoogle Scholar
  14. Claiborne A (1985). Catalase Activity: In Greenwald RA (Ed.) CRC Handbook of Methods in Oxygen Radical Research. CRC Press, Boca Raton, FL. 283–284Google Scholar
  15. Dhindsa R S, Plumb-Dhindsa P, Thorpe T A (1981). Leaf senescence: correlated with increased level of membrane permeability and lipid peroxidation and decreased levels of Superoxide dismutase and Catalase. J Exp Bot, 32(1): 93–101CrossRefGoogle Scholar
  16. Eckert K, Grabowska E, Stange R, Schneider U, Eschmann K, Maurer H R (1999). Effects of oral bromelain administration on the impaired immunocytotoxicity of mononuclear cells from mammary tumor patients. Oncol Rep, 6(6): 1191–1199PubMedGoogle Scholar
  17. Ellman G L (1959). Tissue sulfhydryl groups. Arch Biochem Biophys, 82(1): 70–77CrossRefPubMedGoogle Scholar
  18. Ellman G L, Courtney K D, Andres V Jr, Feather-Stone R M (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol, 7(2): 88–95CrossRefPubMedGoogle Scholar
  19. Eroglu H E (2009). Toxic nuclear effects of the organophosphorus insecticide Dichlorvos (DDVP) in human peripheral blood lymphocytes. Acta Biol Hung, 60(4): 409–416CrossRefPubMedGoogle Scholar
  20. Gallo M A, Lawryk N J (1991). Organic phosphorus pesticides. In Handbook of Pesticide Toxicology. Hayes W J Jr, and Laws E R Jr., Eds. New York: Acad Press, 5: 917–1123Google Scholar
  21. Gaspari R J, Paydarfar D (2011). Dichlorvos-induced central apnea: effects of selective brainstem exposure in the rat. Neurotoxicology, 32(2): 206–214CrossRefPubMedPubMedCentralGoogle Scholar
  22. HabigW H, Pabst M J, Jakoby W B (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem, 249(22): 7130–7139Google Scholar
  23. Habashi S A, Moghimi A, Sabouni F, Majd S A (2012). Inhibition of NO production in LPS-stimulated primary rat microglial cells by Bromelain. J of Cell and Mol Res, 3(2): 57–65Google Scholar
  24. Hale L P (2004). Proteolytic activity and immunogenicity of oral bromelain within the gastrointestinal tract of mice. Int Immunopharmacol, 4(2): 255–264CrossRefPubMedGoogle Scholar
  25. Hale L P, Greer P K, Sempowski G D (2002). Bromelain treatment alters leukocyte expression of cell surface molecules involved in cellular adhesion and activation. Clin Immunol, 104(2): 183–190CrossRefPubMedGoogle Scholar
  26. Hale L P, Greer P K, Trinh C T, Gottfried M R (2005). Treatment with oral bromelain decreases colonic inflammation in the IL-10-deficient murine model of inflammatory bowel disease. Clin Immunol, 116(2): 135–142CrossRefPubMedGoogle Scholar
  27. Hinz V, Grewig S, Schmidt B H (1996). Metrifonate and dichlorvos: effects of a single oral administration on cholinesterase activity in rat brain and blood. Neurochem Res, 21(3): 339–345CrossRefPubMedGoogle Scholar
  28. Jones D P (2006). Redefining oxidative stress. Antioxid Redox Signal, 8 (9-10): 1865–1879CrossRefPubMedGoogle Scholar
  29. Kangralkar V A, Shivraj D, Patil, Bandivadekar R M (2010). Oxidative stress and diabetes: A review. International J of Pharmaceut App, 1 (1): 38–45Google Scholar
  30. Kaur P, Radotra B, Minz RW, Gill K D (2007). Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neurotoxicol, 28(6): 1208–1219CrossRefGoogle Scholar
  31. Lauer D, Reichenbach A, Birkenmeier G (2001). Alpha 2-macroglobulin-mediated degradation of amyloid beta 1–42: a mechanism to enhance amyloid beta catabolism. Exp Neurol, 167(2): 385–392CrossRefPubMedGoogle Scholar
  32. Lotz-Winter H (1990). On the pharmacology of bromelain: an update with special regard to animal studies on dose-dependent effects. Planta Med, 56(3): 249–253CrossRefPubMedGoogle Scholar
  33. Maurer H R (2001). Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci, 58(9): 1234–1245CrossRefPubMedGoogle Scholar
  34. Mohandas J, Marshal J, Duggin G, Horvath J S, Tiller D (1984). Differential distribution of glutathione and glutathione related enzymes in rabbit kidney. Cancer Res, 44: 5086–5091PubMedGoogle Scholar
  35. Ohkawa H, Ohishi N, Yagi K (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 95(2): 351–358CrossRefPubMedGoogle Scholar
  36. Peña-Llopis S, Ferrando M D, Peña J B (2003). Increased recovery of brain acetylcholinesterase activity in dichlorvos-intoxicated European eels Anguilla anguilla by bath treatment with N-acetylcysteine. Dis Aquat Organ, 55(3): 237–245CrossRefPubMedGoogle Scholar
  37. Raheja G, Gill K D (2002). Calcium homeostasis and dichlorvos induced neurotoxicity in rat brain. Mol Cell Biochem, 232(1–2): 13–18CrossRefPubMedGoogle Scholar
  38. Reznick A Z, Packer L (1994). Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol, 233: 357–363CrossRefPubMedGoogle Scholar
  39. Roger A (2006). Bromelain. Plast Reconstr Surg, 118(7): 1640–1644CrossRefGoogle Scholar
  40. Sarin S, Gill K D (1999). Dichlorvos induced alterations in glucose homeostasis: possible implications on the state of neuronal function in rats. Mol Cell Biochem, 199(1–2): 87–92CrossRefPubMedGoogle Scholar
  41. Savolainen K (2001). Understanding the toxic action of organophosphates. In: Krieger R I, editor. Handbook of Pesticide Toxicology, 2:1013–1043Google Scholar
  42. Schulz H, Nagymajtényi L, Dési I (1995). Life-time exposure to dichlorvos affects behaviour of mature rats. Hum Exp Toxicol, 14(9): 721–726CrossRefPubMedGoogle Scholar
  43. Sharma P, Singh R (2012). Dichlorvos and lindane induced oxidative stress in rat brain: Protective effects of ginger. Pharmacognosy Res, 4 (1): 27–32CrossRefPubMedPubMedCentralGoogle Scholar
  44. Shenouda J, Green P, Sultatos L (2009). An evaluation of the inhibition of human butyrylcholinesterase and acetylcholinesterase by the organophosphate chlorpyrifosoxon. Toxicol Appl Pharmacol, 241(2): 135–142CrossRefPubMedPubMedCentralGoogle Scholar
  45. Silva K C, Assis C R, Oliveira V M, Carvalho L B Jr, Bezerra R S (2013). Kinetic and physicochemical properties of brain acetylcholinesterase from the peacock bass (Cichla ocellaris) and in vitro effect of pesticides and metal ions. Aquat Toxicol, 126: 191–197CrossRefPubMedGoogle Scholar
  46. U.S. Environmental Protection Agency (2006). Interim Reregistration Eligibility Decision for Dichlorvos (DDVP). Vet Hum Toxicol, 41 (5): 290–292Google Scholar
  47. Xing H, Wang X, Sun G, Gao X, Xu S, Wang X (2012). Effects of atrazine and chlorpyrifos on activity and transcription of glutathione S-transferase in common carp (Cyprinuscarpio L.). Environ Toxicol Pharmacol, 33(2): 233–244CrossRefPubMedGoogle Scholar
  48. Yadav P, Jadhav S E, Kumar V, Kaul K K, Pant S C, Flora S J S (2012). Protective efficacy of 2-PAMCl, atropine and curcumin against dichlorvos induced toxicity in rats. Interdiscip Toxicol, 5(1): 1–8CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yoshikawa T, Naito Y (2002). What Is Oxidative Stress? J of the Japan Med Association, 45(7): 271–276Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bioscience and BiotechnologyBanasthali UniversityBanasthaliIndia

Personalised recommendations