Skip to main content
Log in

Maize centromeres: where sequence meets epigenetics

  • Review
  • Published:
Frontiers in Biology

Abstract

The centromere is a highly organized structure mainly composed of repeat sequences, which make this region extremely difficult for sequencing and other analyses. It plays a conserved role in equal division of chromosomes into daughter cells in both mitosis and meiosis. However, centromere sequences show notable plasticity. In a dicentric chromosome, one of the centromeres can become inactivated with the underlying DNA unchanged. Furthermore, formerly inactive centromeres can regain activity under certain conditions. In addition, neocentromeres without centromeric repeats have been found in a wide spectrum of species. This evidence indicates that epigenetic mechanisms together with centromeric sequences are associated with centromere specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfenito MR, Birchler J A (1993). Molecular characterization of a maize B chromosome centric sequence. Genetics, 135(2): 589–597

    PubMed  CAS  Google Scholar 

  • Allshire R C, Karpen G H (2008). Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet, 9(12): 923–937

    Article  PubMed  CAS  Google Scholar 

  • Amor D J, Choo K H A (2002). Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet, 71(4): 695–714

    Article  PubMed  Google Scholar 

  • Ananiev E V, Phillips R L, Rines H W (1998). Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A, 95(22): 13073–13078

    Article  PubMed  CAS  Google Scholar 

  • Ando S, Yang H, Nozaki N, Okazaki T, Yoda K (2002). CENP-A, -B, and -C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol Cell Biol, 22(7): 2229–2241

    Article  PubMed  CAS  Google Scholar 

  • Birchler J A, Han F P (2009). Maize centromeres: structure, function, epigenetics. Annu Rev Genet, 43(1): 287–303

    Article  PubMed  CAS  Google Scholar 

  • Blower M D, Sullivan B A, Karpen G H (2002). Conserved organization of centromeric chromatin in flies and humans. Dev Cell, 2(3): 319–330

    Article  PubMed  CAS  Google Scholar 

  • Carlson W R (1969). Factors affecting preferential fertilization in maize. Genetics, 62(3): 543–554

    PubMed  CAS  Google Scholar 

  • Carlson W R, Phillips R (1986). The B-chromosome of maize. Crit Rev Plant Sci, 3(3): 201–226

    Article  Google Scholar 

  • Choo K H A (1997). Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet, 61(6): 1225–1233

    Article  PubMed  CAS  Google Scholar 

  • Dawe R K, Hiatt E N (2004). Plant neocentromeres: fast, focused, and driven. Chromosome Res, 12(6): 655–669

    Article  PubMed  CAS  Google Scholar 

  • Dawe R K, Reed L M, Yu H G, Muszynski M G, Hiatt E N (1999). A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell, 11(7): 1227–1238

    Article  PubMed  CAS  Google Scholar 

  • Guerra M, Cabral G, Cuacos M, González-García M, González-Sánchez M, Vega J, Puertas M J (2010). Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet Genome Res, 129(1–3): 82–96

    Article  PubMed  CAS  Google Scholar 

  • Hamant O, Golubovskaya I, Meeley R, Fiume E, Timofejeva L, Schleiffer A, Nasmyth K, Cande W Z (2005). A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol, 15(10): 948–954

    Article  PubMed  CAS  Google Scholar 

  • Han F P, Gao Z, Birchler J A (2009). Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell, 21(7): 1929–1939

    Article  PubMed  CAS  Google Scholar 

  • Han F P, Gao Z, Yu W C, Birchler J A (2007a). Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell, 19(12): 3853–3863

    Article  PubMed  CAS  Google Scholar 

  • Han F P, Lamb J C, Birchler J A (2006). High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci U S A, 103(9): 3238–3243

    Article  PubMed  CAS  Google Scholar 

  • Han F P, Lamb J C, Yu W C, Gao Z, Birchler J A (2007b). Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell, 19(2): 524–533

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik H S (2001). The centromere paradox: stable inheritance with rapidly evolving DNA. Science, 293(5532): 1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Higgins A W, Gustashaw K M, Willard H F (2005). Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res, 13(8): 745–762

    Article  PubMed  CAS  Google Scholar 

  • Jiang J M, Birchler J A, Parrott W A, Dawe R K (2003). A molecular view of plant centromeres. Trends Plant Sci, 8(12): 570–575

    Article  PubMed  CAS  Google Scholar 

  • Jin WW, Melo J R, Nagaki K, Talbert P B, Henikoff S, Dawe R K, Jiang J M (2004). Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell, 16(3): 571–581

    Article  PubMed  CAS  Google Scholar 

  • Jones R N, Rees H (1982). B chromosomes. London, Academic Press

    Google Scholar 

  • Lamb J C, Kato A, Birchler J A (2005). Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma, 113(7): 337–349

    Article  PubMed  CAS  Google Scholar 

  • Lin B Y (1978). Regional control of nondisjunction of the B chromosome in maize. Genetics, 90(3): 613–627

    PubMed  CAS  Google Scholar 

  • Malik H S, Henikoff S (2009). Major evolutionary transitions in centromere complexity. Cell, 138(6): 1067–1082

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1939). The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci U S A, 25(8): 405–416

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1941). The stability of broken ends of chromosomes in Zea mays. Genetics, 26(2): 234–282

    PubMed  CAS  Google Scholar 

  • Mroczek R J, Dawe R K (2003). Distribution of retroelements in centromeres and neocentromeres of maize. Genetics, 165(2): 809–819

    PubMed  CAS  Google Scholar 

  • Nagaki K, Song J Q, Stupar R M, Parokonny A S, Yuan Q P, Ouyang S, Liu J, Hsiao J, Jones K M, Dawe R K, Buell C R, Jiang J M (2003). Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics, 163(2): 759–770

    PubMed  CAS  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo T R (2005). Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A, 102(28): 9842–9847

    Article  PubMed  CAS  Google Scholar 

  • Page S L, Shaffer L G (1998). Chromosome stability is maintained by short intercentromeric distance in functionally dicentric human Robertsonian translocations. Chromosome Res, 6(2): 115–122

    Article  PubMed  CAS  Google Scholar 

  • Presting G G, Malysheva L, Fuchs J, Schubert I Z (1998). A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J, 16(6): 721–728

    Article  PubMed  CAS  Google Scholar 

  • Rhoades M M, Vilkomerson H (1942). On the anaphase movement of chromosomes. Proc Natl Acad Sci U S A, 28(10): 433–436

    Article  PubMed  CAS  Google Scholar 

  • Roman H (1947). Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics, 32: 391–409

    Google Scholar 

  • Roman H (1948). Directed fertilization in maize. Proc Natl Acad Sci USA, 34(2): 36–42

    Article  PubMed  CAS  Google Scholar 

  • Shelby R D, Monier K, Sullivan K F (2000). Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol, 151(5): 1113–1118

    Article  PubMed  CAS  Google Scholar 

  • Stimpson K M, Song I Y, Jauch A, Holtgreve-Grez H, Hayden K E, Bridger J M, Sullivan B A, Copenhaver G P (2010). Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet, 6(8): e1001061

    Article  PubMed  Google Scholar 

  • Stimpson K M, Sullivan B A (2010). Epigenomics of centromere assembly and function. Curr Opin Cell Biol, 22(6): 1–9

    Article  Google Scholar 

  • Sullivan B A, Willard H F (1998). Stable dicentric X chromosomes with two functional centromeres. Nat Genet, 20(3): 227–228

    Article  PubMed  CAS  Google Scholar 

  • Topp C N, Okagaki R J, Melo J R, Kynast R G, Phillips R L, Dawe R K (2009). Identification of a maize neocentromere in an oat-maize addition line. Cytogenet Genome Res, 124(3–4): 228–238

    Article  PubMed  CAS  Google Scholar 

  • Van Hooser A A, Ouspenski I I, Gregson H C, Starr D A, Yen T J, Goldberg M L, Yokomori K, Earnshaw W C, Sullivan K F, Brinkley B R (2001). Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci, 114(Pt 19): 3529–3542

    PubMed  Google Scholar 

  • Voullaire L E, Slater H R, Petrovic V, Choo K H A (1993). A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet, 52(6): 1153–1163

    PubMed  CAS  Google Scholar 

  • Ward E J (1973). Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics, 73(3): 387–391

    PubMed  CAS  Google Scholar 

  • Watanabe Y (2005). Shugoshin: guardian spirit at the centromere. Curr Opin Cell Biol, 17(6): 590–595

    Article  PubMed  CAS  Google Scholar 

  • Yu W C, Han F P, Gao Z, Vega J M, Birchler J A (2007). Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci U S A, 104(21): 8924–8929

    Article  PubMed  CAS  Google Scholar 

  • Yu W C, Lamb J C, Han F P, Birchler J A (2006). Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A, 103(46): 17331–17336

    Article  PubMed  CAS  Google Scholar 

  • Zhang W L, Friebe B, Gill B S, Jiang J M (2010). Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma, 119(5): 553–563

    Article  PubMed  Google Scholar 

  • Zheng Y Z, Roseman R R, Carlson WR (1999). Time course study of the chromosome-type breakage-fusion-bridge cycle in maize. Genetics, 153(3): 1435–1444

    PubMed  CAS  Google Scholar 

  • Zhong C X, Marshall J B, Topp C, Mroczek R, Kato A, Nagaki K, Birchler J A, Jiang J M, Dawe R K (2002). Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell, 14(11): 2825–2836

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James A. Birchler or Fangpu Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, W., Birchler, J.A. & Han, F. Maize centromeres: where sequence meets epigenetics. Front. Biol. 6, 102–108 (2011). https://doi.org/10.1007/s11515-011-1118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-011-1118-6

Keywords

Navigation