Impact of Phytic Acid on the Physical and Oxidative Stability of Protein-Stabilized Oil-in-Water Emulsions


The effects of phytic acid on the physical and oxidative stability of flaxseed oil-in-water emulsions containing whey protein-coated lipid droplets were investigated. The surface potential, particle size, microstructure, appearance, and oxidation of these emulsions were monitored when they were stored at pH 3.5 and 7.0 for 25 days in the dark (37 °C). The phytic acid and protein-coated lipid droplets had similar charges (both negative) at pH 7.0, but had opposite charges (negative and positive) at pH 3.5. At pH 7.0, the addition of phytic acid had no impact on the physical stability of the emulsions but significantly improved their oxidative stability, which was attributed to its ability to sequester pro-oxidant transition metals (iron ions). At pH 3.5, extensive droplet aggregation and creaming occurred in the emulsions containing phytic acid, which was ascribed to charge neutralization and ion bridging. The oxidative stability of the acidified emulsions, however, still increased after addition of phytic acid, which was again attributed to its ability to chelate iron ions. Interestingly, the antioxidant activity of phytic acid decreased as its level was increased. Our results suggest that phytic acid may be used as a natural antioxidant to improve the oxidative stability of food emulsions containing polyunsaturated fatty acids, but its level must be carefully controlled.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    A.J.S. Angelo, Crit. Rev. Food Sci. Nutr. 36(3), 175–224 (1996)

    Google Scholar 

  2. 2.

    L.R. Mariutti, N. Bragagnolo, Food Res. Int. 94, 90–100 (2017)

    CAS  PubMed  Google Scholar 

  3. 3.

    S. Maqsood, S. Benjakul, A.K. Balange, Food Chem. 130(2), 408–416 (2012)

    CAS  Google Scholar 

  4. 4.

    C. Jacobsen, Eur J Lipid Sci Tech 117(11), 1853–1866 (2015)

    CAS  Google Scholar 

  5. 5.

    C.C. Berton-Carabin, A. Schröder, A. Rovalino-Cordova, K. Schroën, L. Sagis, Eur J Lipid Sci Tech 118(11), 1630–1643 (2016)

    CAS  Google Scholar 

  6. 6.

    Y.E. Sun, W.D. Wang, H.W. Chen, C. Li, Crit. Rev. Food Sci. Nutr. 51(5), 453–466 (2011)

    CAS  PubMed  Google Scholar 

  7. 7.

    Z. Zhang, R. Zhang, Q. Sun, Y. Park, D.J. McClements, Food Hydrocoll. 65, 198–205 (2017)

    CAS  Google Scholar 

  8. 8.

    C. Qiu, M. Zhao, E.A. Decker, D.J. McClements, Food Chem. 175, 249–257 (2015)

    CAS  PubMed  Google Scholar 

  9. 9.

    C.E. Gumus, E.A. Decker, D.J. McClements, Food Res. Int. 100(2), 175–185 (2017)

    CAS  PubMed  Google Scholar 

  10. 10.

    A. Villiere, M. Viau, I. Bronnec, N. Moreau, G. Claude, J Ag Food Chem 53(5), 1514–1520 (2005)

    CAS  Google Scholar 

  11. 11.

    M. Sugiarto, A. Ye, M.W. Taylor, H. Singh, Dairy Sci Tech 90(1), 87–98 (2009)

    Google Scholar 

  12. 12.

    C. Qiu, W. Sun, C. Cui, M. Zhao, Food Chem. 141(3), 2772–2778 (2013)

    CAS  PubMed  Google Scholar 

  13. 13.

    M. Kargar, F. Spyropoulos, I.T. Norton, J Coll Int Sci 357(2), 527–533 (2011)

    CAS  Google Scholar 

  14. 14.

    D. Djordjevic, D.J. McClements, E. Decker, J. Food Sci. 69, C356–C362 (2004)

    CAS  Google Scholar 

  15. 15.

    Y. Yamamoto, E. Kato, A. Ando, Biosci. Biotechnol. Biochem. 60(9), 1430–1433 (1996)

    CAS  Google Scholar 

  16. 16.

    E. Hebishy, M. Buffa, B. Guamis, A. Blasco-Moreno, A.-J. Trujillo, Innovative Food Sci Emerging Tech 32, 79–90 (2015)

    CAS  Google Scholar 

  17. 17.

    Y. Shao, C.-H. Tang, Food Hydrocoll. 37, 149–158 (2014)

    CAS  Google Scholar 

  18. 18.

    N. Cheetangdee, S. Benjakul, J Sci Food Ag 95(7), 1461–1468 (2015)

    CAS  Google Scholar 

  19. 19.

    T. Damgaard, R. Lametsch, J. Otte, J Food Sci Tech 52(10), 6511–6519 (2015)

    CAS  Google Scholar 

  20. 20.

    P.J. Garcia-Moreno, A. Guadix, E.M. Guadix, C. Jacobsen, Food Chem. 203, 124–135 (2016)

    CAS  PubMed  Google Scholar 

  21. 21.

    Y.H. Wang, Z.L. Wan, X.Q. Yang, J.M. Wang, J. Guo, Y. Lin, Food Hydrocoll. 54, 40–48 (2016)

    CAS  Google Scholar 

  22. 22.

    Y. Fan, Y. Liu, L. Gao, Y. Zhang, J. Yi, Food Chem. 265, 200–207 (2018)

    CAS  PubMed  Google Scholar 

  23. 23.

    G.K. Samdani, D.J. McClements, E.A. Decker, J Ag Food Chem 66(15), 3939–3948 (2018)

    CAS  Google Scholar 

  24. 24.

    U. Schlemmer, W. Frølich, R.M. Prieto, F. Grases, Mol. Nutr. Food Res. 53(S2), S330–S375 (2009)

    PubMed  Google Scholar 

  25. 25.

    K.L. Empson, T.P. Labuza, E. Graf, J. Food Sci. 56(2), 560–563 (1991)

    CAS  Google Scholar 

  26. 26.

    A. Zajdel, A. Wilczok, L. Weglarz, Z. Dzierzewicz, Biomed. Res. Int., 147307 (2013, 2013)

  27. 27.

    C. Canan, F. Delaroza, R. Casagrande, M.M. Baracat, M. Shimokomaki, E.l. Ida, Acta Scientiarum-Tech 34(4), 457–463 (2012)

    Google Scholar 

  28. 28.

    M. Sakac, J. Canadanovic-Brunet, A. Misan, V. Tumbas, D. Medic, Food Tech Biotech 48(4), 524–529 (2010)

    CAS  Google Scholar 

  29. 29.

    Y. Pei, J. Wan, M. You, D.J. McClements, Y. Li, B. Li, Food Hydrocoll. 87, 90–96 (2019)

    CAS  Google Scholar 

  30. 30.

    B. Zheng, Z. Zhang, F. Chen, X. Luo, D.J. McClements, Food Hydrocoll. 71, 187–197 (2017)

    CAS  Google Scholar 

  31. 31.

    N.C. Shantha, E. Decker, J. AOAC Int. 77, 421–424 (1994)

    CAS  PubMed  Google Scholar 

  32. 32.

    V. Kumar, A.K. Sinha, H.P.S. Makkar, K. Becker, Food Chem. 120(4), 945–959 (2010)

    CAS  Google Scholar 

  33. 33.

    E. Dickinson, Food Hydrocoll. 17, 25–39 (2003)

    CAS  Google Scholar 

  34. 34.

    D.J. McClements, Curr Op Coll Int Sci 9(5), 305–313 (2004)

    CAS  Google Scholar 

  35. 35.

    D.J. McClements, E.A. Decker, J. Food Sci. 65(8), 1270–1282 (2000)

    CAS  Google Scholar 

  36. 36.

    X. Yao, Q. Xu, D. Tian, N. Wang, Y. Fang, Z. Deng, G.O. Phillips, J. Lu, J Ag Food Chem 61(19), 4639–4645 (2013)

    CAS  Google Scholar 

  37. 37.

    X. Xu, W. Liu, L. Luo, C. Liu, D.J. McClements, Food Hydrocoll. 72, 185–194 (2017)

    CAS  Google Scholar 

  38. 38.

    D. J. McClements, E. Decker, J Ag Food Chem (2017)

    Google Scholar 

  39. 39.

    N.S. Nielsen, A. Petersen, A.S. Meyer, M. Timm-heinrich, C. Jacobsen, J Ag Food Chem 52, 7690–7699 (2004)

    CAS  Google Scholar 

  40. 40.

    M. Hu, D.J. McClements, E.A. Decker, J Ag Food Chem 51, 1435–1439 (2003)

    CAS  Google Scholar 

  41. 41.

    J.L. Donnellly, E. Decker, D.J. McClements, J. Food Sci. 63(6), 997–1000 (1998)

    Google Scholar 

  42. 42.

    G.S. Gilani, K.A. Cockell, E. Sepehr, J. AOAC Int. 88(3), 967–987 (2005)

    CAS  PubMed  Google Scholar 

  43. 43.

    L. Oatway, T. Vasanthan, J.H. Helm, Food Rev. Int. 17(4), 419–431 (2001)

    CAS  Google Scholar 

  44. 44.

    E.O. Silva, A. Bracarense, J. Food Sci. 81(6), R1357–R1362 (2016)

    CAS  PubMed  Google Scholar 

Download references


The authors acknowledge the National Key Research and Development Program of China (Program No. 2017YFD0400205), Technical Innovation Program of Hubei province (Program No. 2017ABA150) & the Wuhan Yellow Crane Special Talents Program. This material was partly based upon work supported by the National Institute of Food and Agriculture, USDA, Massachusetts Agricultural Experiment Station (MAS00491).

Author information



Corresponding authors

Correspondence to David Julian McClements or Bin Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pei, Y., Deng, Q., McClements, D.J. et al. Impact of Phytic Acid on the Physical and Oxidative Stability of Protein-Stabilized Oil-in-Water Emulsions. Food Biophysics (2020).

Download citation


  • Phytic acid
  • Whey protein
  • Physical stability
  • Oxidative stability
  • Emulsion