Influence of Soya Lecithin, Sorbitan and Glyceryl Monostearate on Physicochemical Properties of Organogels

Abstract

The objective of this study is to investigate the effects of three different organogelators, sorbitan monostearate (SMS), soya lecithin (SL) and glyceryl monostearate (GMS) prepared at different concentrations (12%, 15% and 18%, w/w) on the structural, thermal and mechanical properties of palm olein (PO)-based organogels. Polarized light microscopy analysis revealed needle-like crystals in SMS-PO, rod-shaped tubules in SL-PO and rosette-like aggregates in GMS-PO organogels. Intermolecular hydrogen bonding and van der Waals forces were the main drivers for the self-aggregation of these organogelators in PO, as observed in Fourier transform infrared (FTIR) spectroscopy. X-ray diffraction (XRD) results indicated β’-type polymorphic structure in SL-PO and GMS-PO. As the concentration of organogelators increased, there was a corresponding increase in the firmness, gel-sol transition (Tgs) and melting temperatures of the organogels. SMS-PO with amorphous structure had the lowest firmness, thus produced weaker gel with lower thermal stability. The oil binding capacity (OBC) of both SL-PO and GMS-PO were over 90%, significantly higher than that of SMS-PO organogels. These findings indicate that crystallization is the key determinant factor to the final properties of the organogel networks. This is influenced by the molecular structure and the concentration of the organogelators used.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    F.C. Wang, A.J. Gravelle, A.I. Blake, A.G. Marangoni, Curr. Opin. Food Sci. 7, 27 (2016).

    Article  Google Scholar 

  2. 2.

    M.A. Rogers, Food Res. Int. 42,747 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    F.R. Lupi, A. Shakeel, V. Greco, N. Baldino, V. Calabrò, D. Gabriele, LWT - Food Sci. Technol. 77, 422 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    J. Paland, J. Dey, Langmuir 27, 3401 (2011).

  5. 5.

    T. Moschakis, E.Panagiotopoulou, E. Katsanidis, LWT - Food Sci. Technol. 73, 153 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    D.K. Shah, S.S. Sagiri, B. Behera, K. Pal, K. Pramanik, J. Appl. Polym. Sci. 129,793 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    L. Han, L. Li, B. Li, L. Zhao, G.Q. Liu, X. Liu, X. Wang, J. Am. Oil Chem. Soc. 91, 1783 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    V.K. Singh, K. Pramanik, S.S. Ray, K. Pal, AAPS PharmSciTech 16, 293 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    E. Yilmazand, M. Ogutcu, J. Am. Oil Chem. Soc. 91, 1007 (2014).

  10. 10.

    A.J. Martins, A.A. Vicente, R.L. Cunha, M.A. Cerqueira, Food Funct. 9, 758 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    C. Chung, A. Sher, P. Rousset, E.A. Decker, D.J. McClements, J. Food Eng. 209, 1 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    N. Baran, V.K. Singh, K. Pal, A. Anis, D.K. Pradhan, K. Pramanik, Polym. Plast. Technol. Eng. 53, 865 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    D. Trujillo-Ramírez, C. Lobato-Calleros, E.J. Vernon-Carter, J. Alvarez-Ramirez, Food Res. Int. 119, 829 (2019).

    Article  Google Scholar 

  14. 14.

    B. Matthäus, Eur. J. Lipid Sci. Technol. 109, 400 (2007).

    Article  Google Scholar 

  15. 15.

    O.I. Mba, M.-J. Dumont, M. Ngadi, Food Biosci. 10, 26 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    A.S.H. OngandS, H. Goh, Food Nutr. Bull. 23, 11 (2002).

  17. 17.

    M.E. Norhaizan, S. Hosseini, S. Gangadaran, S.T. Lee, F.R. Kapourchali, M.H. Moghadasian, Lipid Technol. 25, 39 (2013).

    Article  Google Scholar 

  18. 18.

    S. Pradhan, S.S. Sagiri, V.K. Singh, K. Pal, S.S. Ray, D.K. Pradhan, J. Appl. Polym. Sci. 131 (2014).

  19. 19.

    B. Behera, S.S. Sagiri, K. Pal, A. Srivastava, J. Appl. Polym. Sci. 127, 4910 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    H. Si, L.Z. Cheong, J. Huang, X. Wang, H. Zhang, J. Am. Oil Chem. Soc. 93, 1075 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    G. Fayaz, S.A.H. Goli, M. Kadivar, J. Am. Oil Chem. Soc. 94, 47 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    P.F.C. Lim, X.Y. Liu, L. Kang, P.C.L. Ho, S.Y. Chan, Int. J. Pharm. 358, 102 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    M. Cui, L. Mao, Y. Lu, F. Yuan, Y. Gao, LWT - Food Sci. Technol. 106, 83 (2019).

    CAS  Article  Google Scholar 

  24. 24.

    M. Suzuki, Y. Nakajima, M. Yumoto, M. Kimura, H. Shirai, K. Hanabusa, Langmuir 19, 8622 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    F.R. Lupi, V. Greco, N. Baldino, B. de Cindio, P. Fischer, D. Gabriele, J. Colloid Interface Sci. 483, 154 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    L.S.K. Dassanayake, D.R. Kodali, S. Ueno, K. Sato, J. Am. Oil Chem. Soc. 86, 1163 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    K. F. Schaink van Malssen, S. Morgado-Alves, D. Kalnin, E. van der Linden, Food Res. Int. 96, 40 (2007).

  28. 28.

    D. Satapathy, D. Biswas, B. Behera, S.S. Sagiri, K. Pal, K. Pramanik, J. Appl. Polym. Sci. 129, 585 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    L.H. Fasolin, M.A. Cerqueira, L.M. Pastrana, A.A. Vicente, R.L. Cunha, Food Struct. 16, 50 (2018).

    Article  Google Scholar 

  30. 30.

    M.A. Cerqueira, L.H. Fasolin, C.S.F. Picone, L.M. Pastrana, R.L. Cunha, A.A. Vicente, Food Res. Int. 96, 161 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    D. Battegazzore, S. Bocchini, A. Frache, Express Polym. Lett. 5, 849 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    E.J. Pérez-Monterroza, H.J. Ciro-Velásquez, J.C.A. Tobon, Rev. Fac. Nac. Agron. 69, 7945 (2016).

    Article  Google Scholar 

  33. 33.

    A.J. Wright, A.G. Marangoni, Edible Oleogels Struct. Heal. Implic. 81 (2011)

  34. 34.

    E.D. Coand, A.G. Marangoni, J. Am. Oil Chem. Soc. 89, 749 (2012).

  35. 35.

    M. Ogutcuand, E. Yılmaz, Grasas y Aceites 65, 040 (2014).

  36. 36.

    S. Pandolsookand, S. Kupongsak, J. Food Eng. 214, 182 (2017).

Download references

Acknowledgements

This study was funded by the Fundamental Research Grant Scheme (FRGS/1/2015/WAB01/MUSM/03/1) from the Ministry of Higher Education, Malaysia, and also supported by the School of Science, Monash University Malaysia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yin Yin Thoo.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghan, S.Y., Siow, L.F., Tan, C.P. et al. Influence of Soya Lecithin, Sorbitan and Glyceryl Monostearate on Physicochemical Properties of Organogels. Food Biophysics 15, 386–395 (2020). https://doi.org/10.1007/s11483-020-09633-z

Download citation

Keywords

  • Organogels
  • Palm olein
  • Sorbitan monostearate
  • Soya lecithin
  • Glyceryl monostearate