The Impact of Esterification Degree and Source of Pectins on Complex Coacervation as a Tool to Mask the Bitterness of Potato Protein Isolates

Abstract

There is an increasing interest in the food industry to use potato protein as an alternative plant protein. However, its bitter taste often limits the utilization in novel foods and beverages. Coacervation is a promising technique to mask bitterness of certain food compounds. In the present study, we aimed to reduce the degree of bitterness of potato protein by generating protein-pectin complexes based on coacervation. Potato protein isolate and pectins derived from various origins having different degree of esterification (DE) were initially mixed under acidic conditions to promote the formation of complexes. Single and complex biopolymers were then characterized in terms of surface charge, solubility, rheological and sensorial properties as a function of protein pectin ratio, pectin source, and the degree of esterification, respectively. The protein-pectin ratio and degree of esterification of pectins substantially influenced the interaction behaviour and phase separation of the protein-pectin mixtures. The bitterness score decreased with increasing surface charge and pectin concentration. Bitterness was strongly reduced for complexes formed with high DE citrus pectin at a protein pectin ratio 0.33. The complexes generated at this ratio were relatively stable based on visual observation and microscopic images. Our results might have significant implications for the utilization of potato proteins in beverage applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    A. Nesterenko, I. Alric, F. Silvestre, V. Durrieu, Ind. Crop. Prod. 42, 469–479 (2013)

    CAS  Google Scholar 

  2. 2.

    S. Liu, C. Elmer, N.H. Low, M.T. Nickerson, Food Res. Int. 43(2), 489–495 (2010)

    CAS  Google Scholar 

  3. 3.

    S. Sethi, S.K. Tyagi, R.K. Anurag, J. Food Sci. Technol. 53(9), 3408–3423 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    M. Yavuz and B. Özçelik, Academic Food Journal/Akademik GIDA 14 (4) (2016)

  5. 5.

    A. Görgüç, P. Özer, F.M. Yılmaz, J. Food Compos. Anal. 87, 103424 (2020)

    Google Scholar 

  6. 6.

    E. Sipos and L. Foster, in Dietary Proteins (AOCS Publishing, 1992), pp. 243–282

  7. 7.

    V.R. Young, P.L. Pellett, The American Journal of Clinical Nutrition 59(5), 1203S–1212S (1994)

    CAS  Google Scholar 

  8. 8.

    A. Tarrega, M.O. Ramírez-Sucre, J.F. Vélez-Ruiz, E. Costell, J. Food Eng. 109(3), 467–474 (2012)

    CAS  Google Scholar 

  9. 9.

    I. Siro, E. Kapolna, B. Kápolna, A. Lugasi, Appetite 51(3), 456–467 (2008)

    PubMed  Google Scholar 

  10. 10.

    D. Asker, J. Weiss, D.J. McClements, J. Agric. Food Chem. 59(3), 1041–1049 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    N.J. Gaudette, G.J. Pickering, Crit. Rev. Food Sci. Nutr. 53(5), 464–481 (2013)

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    D. Sun-Waterhouse, S.S. Wadhwa, Food Bioprocess Technol. 6(3), 607–627 (2013)

    CAS  Google Scholar 

  13. 13.

    B. Zeeb, M. Yavuz-Düzgun, J. Dreher, et al., Food & Function 9(4), 2261–2269 (2018)

    CAS  Google Scholar 

  14. 14.

    A.S. Sivam, D. Sun-Waterhouse, C.O. Perera, G.I.N. Waterhouse, Food Res. Int. 50(2), 574–585 (2013)

    CAS  Google Scholar 

  15. 15.

    M. Friedman, J. Agric. Food Chem. 44(1), 6–29 (1996)

    CAS  Google Scholar 

  16. 16.

    R.L. Jackman, R.Y. Yada, J. Food Sci. 53(5), 1427–1432 (1988)

    CAS  Google Scholar 

  17. 17.

    M.S. Kaldy, Econ. Bot. 26(2), 142–144 (1972)

    Google Scholar 

  18. 18.

    A.C. Kapoor, S.L. Desborough, P.H. Li, Potato Res. 18(3), 469–478 (1975)

    CAS  Google Scholar 

  19. 19.

    L. Stounbjerg, C. Vestergaard, B. Andreasen, R. Ipsen, Colloids Surf. A Physicochem. Eng. Asp. 566, 104–112 (2019)

    CAS  Google Scholar 

  20. 20.

    S. Løkra, K.O. Strætkvern, Food 3(1), 88–95 (2009)

    Google Scholar 

  21. 21.

    H.A. Schols, A.G.J. Voragen, Carbohydr. Res. 256(1), 83–95 (1994)

    CAS  Google Scholar 

  22. 22.

    W.G.T. Willats, P. Knox, J.D. Mikkelsen, Trends Food Sci. Technol. 17(3), 97–104 (2006)

    CAS  Google Scholar 

  23. 23.

    H. Salminen, J. Weiss, Food Biophysics 9(1), 29–38 (2014)

    Google Scholar 

  24. 24.

    P.J.H. Daas, K. Meyer-Hansen, H.A. Schols, G.A. De Ruiter, A.G.J. Voragen, Carbohydr. Res. 318(1–4), 135–145 (1999)

    CAS  Google Scholar 

  25. 25.

    M. Maniruzzaman, J.S. Boateng, M. Bonnefille, A. Aranyos, J.C. Mitchell, D. Douroumis, Eur. J. Pharm. Biopharm. 80(2), 433–442 (2012)

    CAS  PubMed  Google Scholar 

  26. 26.

    D. Douroumis, Expert Opinion on Drug Delivery 4(4), 417–426 (2007)

    CAS  PubMed  Google Scholar 

  27. 27.

    M. Pein, M. Preis, C. Eckert, F.E. Kiene, Int. J. Pharm. 465(1–2), 239–254 (2014)

    CAS  PubMed  Google Scholar 

  28. 28.

    C. Morr, B. German, J. Kinsella, et al., J. Food Sci. 50(6), 1715–1718 (1985)

    CAS  Google Scholar 

  29. 29.

    M.M. Bradford, Anal. Biochem. 72(1), 248–254 (1976)

    CAS  PubMed  Google Scholar 

  30. 30.

    W. H. Gardner, Handbook of Food Additives, 225–270 (1972)

    Google Scholar 

  31. 31.

    M. Meilgaard, G. Civille, B. Carr, Sensory Evaluation Techniques. 4th ed. (CRC Press, New York, 2007), pp. 105–128

    Google Scholar 

  32. 32.

    M. Meilgaard, G. Civille, B. Carr, Sensory Evaluation Techniques, 4th edn. (CRC Press, New York, 2007)

    Google Scholar 

  33. 33.

    C.-H. Tang, X. Sun, Food Hydrocoll. 25(3), 315–324 (2011)

    CAS  Google Scholar 

  34. 34.

    Y. Du, F. Chen, Y. Zhang, C. Rempel, M.R. Thompson, Q. Liu, J. Appl. Polym. Sci. 132(44) (2015)

  35. 35.

    S.-W. Yin, J.-C. Chen, S.-D. Sun, C.H. Tang, X.Q. Yang, Q.B. Wen, J.R. Qi, Food Chem. 128(2), 420–426 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    D.J. McClements, Curr. Opin. Colloid Interface Sci. 9(5), 305–313 (2004)

    CAS  Google Scholar 

  37. 37.

    R. Townend, R.J. Winterbottom, S.N. Timasheff, J. Am. Chem. Soc. 82(12), 3161–3168 (1960)

    CAS  Google Scholar 

  38. 38.

    Y. Yang, M.E. Leser, A.A. Sher, D.J. McClements, Food Hydrocoll. 30(2), 589–596 (2013)

    CAS  Google Scholar 

  39. 39.

    A. Krzeminski, K.A. Prell, J. Weiss, J. Hinrichs, Food Hydrocoll. 35, 332–340 (2014)

    CAS  Google Scholar 

  40. 40.

    X. Wang, Q. Chen, X. Lü, Food Hydrocoll. 38, 129–137 (2014)

    CAS  Google Scholar 

  41. 41.

    R. Lutz, A. Aserin, L. Wicker, N. Garti, Food Hydrocoll. 23(3), 786–794 (2009)

    CAS  Google Scholar 

  42. 42.

    S. Turgeon, C. Schmitt, C. Sanchez, Curr. Opin. Colloid Interface Sci. 12(4–5), 166–178 (2007)

    CAS  Google Scholar 

  43. 43.

    F. Weinbreck, R. De Vries, P. Schrooyen, C. De Kruif, Biomacromolecules 4(2), 293–303 (2003)

    CAS  PubMed  Google Scholar 

  44. 44.

    B. Zeeb, C. Stenger, J. Hinrichs and J. Weiss, Food Structure 10, 10–20 (2016)

    Google Scholar 

  45. 45.

    C. Stenger, B. Zeeb, J. Hinrichs, J. Weiss, J. Dispers. Sci. Technol. 38(9), 1258–1265 (2017)

    CAS  Google Scholar 

  46. 46.

    K. Protte, C. Bollow, A. Sonne, O. Menéndez-Aguirre, J. Weiss, J. Hinrichs, Food Biophysics 11(3), 226–234 (2016)

    Google Scholar 

  47. 47.

    Y.P. Timilsena, T.O. Akanbi, N. Khalid, B. Adhikari, C.J. Barrow, International Journal of Biological Macromolecules 121, 1276–1286 (2019)

    CAS  PubMed  Google Scholar 

  48. 48.

    A. Ye, International Journal of Food Science & Technology 43(3), 406–415 (2008)

    CAS  Google Scholar 

  49. 49.

    C. Sanchez, G. Mekhloufi, C. Schmitt, et al., Langmuir 18(26), 10323–10333 (2002)

    CAS  Google Scholar 

  50. 50.

    Y. Kim, L. Wicker, Food Hydrocolloids 25(3), 419–425 (2011)

    CAS  Google Scholar 

  51. 51.

    U. Einhorn-Stoll, T. Salazar, B. Jaafar, H. Kunzek, Nahrung-Food 45(5), 332–337 (2001)

    CAS  Google Scholar 

  52. 52.

    T. Nordmark and G. R. Ziegler, Food Hydrocolloids 14(6), 579–590 (2000)

  53. 53.

    E. Hans-Ulrich, M. Frank and N. Karl, in Handbook of Food Science, Technology, and Engineering - 4 Volume Set (CRC Press, 2005)

  54. 54.

    Y.A. Antonov, M. Celus, C. Kyomugasho, M. Hendrickx, P. Moldenaers, R. Cardinaels, Food Hydrocoll. 94, 268–278 (2019)

  55. 55.

    D. Powell, E. Morris, M. Gidley, D. Rees, Journal of Molecular Biology 155(4), 517–531 (1982)

  56. 56.

    R. Kohn, O. Markovič, E. Machová, Collect. Czechoslov. Chem. Commun. 48(3), 790–797 (1983)

  57. 57.

    J. Thibault, M. Rinaudo, Biopolymers: Original Research on Biomolecules 24(11), 2131–2143 (1985)

  58. 58.

    M.-C. Ralet, V. Dronnet, H.C. Buchholt, J.-F. Thibault, Carbohydrate Research 336(2), 117–125 (2001)

  59. 59.

    C. Löfgren, S. Guillotin, H. Evenbratt, H. Schols, A.-M. Hermansson, Biomacromolecules 6(2), 646–652 (2005)

  60. 60.

    G. Limberg, R. Körner, H.C. Buchholt, T.M. Christensen, P. Roepstorff, J.D. Mikkelsen, Carbohydr. Res. 327(3), 293–307 (2000)

  61. 61.

    C. Rolin, Pectins and their Manipulation, 222–241 (2002)

  62. 62.

    B.L. Sperber, H.A. Schols, M.A.C. Stuart, W. Norde, A.G. Voragen, Food Hydrocolloids 23(3), 765–772 (2009)

  63. 63.

    S. Warnakulasuriya, P.K. Pillai, A.K. Stone, M.T. Nickerson, Food Chemistry 264, 180–188 (2018)

  64. 64.

    B. Zeeb, L. Mi-Yeon, M. Gibis, J. Weiss, Food Hydrocolloids 74, 53–61 (2018)

  65. 65.

    M. Buchweitz, M. Speth, D. Kammerer, R. Carle, Food Chemistry 139(1–4), 1168–1178 (2013)

  66. 66.

    A.T. Nasseri, J.-F. Thibault, M.-C. Ralet, Tree Sci. Biotechnol 2, 60–70 (2008)

  67. 67.

    C.M. Renard, M.-J. Crépeau, J.-F. Thibault, Carbohydr. Res. 275(1), 155–165 (1995)

  68. 68.

    N. Funasaki, I. Uratsuji, T. Okuno, S. Hirota, S. Neya, Chemical and Pharmaceutical Bulletin 54(8), 1155–1161 (2006)

  69. 69.

    Y. Miyanaga, A. Tanigake, T. Nakamura, et al., International Journal of Pharmaceutics 248(1–2), 207–218 (2002)

  70. 70.

    K. Kurihara, Y. Katsuragi, I. Matsuoka, M. Kashiwayanagi, T. Kumazawa, T. Shoji, Physiology & Behavior 56(6), 1125–1132 (1994)

  71. 71.

    T. Kumazawa, M. Kashiwayanagi, K. Kurihara, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 888(1), 62–69 (1986)

  72. 72.

    E. Guichard, S. Issanchou, A. Descourvieres, P. Etievant, J. Food Sci. 56(6), 1621–1627 (1991)

  73. 73.

    J.P. Ley, Chemosens. Percept. 1(1), 58–77 (2008)

Download references

Acknowledgements

We thank Döhler GmbH (Darmstadt, Germany) and Herbstreith & Fox KG (Neuenbürg, Germany) for generously providing us with biopolymer samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jochen Weiss.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yavuz-Düzgün, M., Zeeb, B., Dreher, J. et al. The Impact of Esterification Degree and Source of Pectins on Complex Coacervation as a Tool to Mask the Bitterness of Potato Protein Isolates. Food Biophysics 15, 376–385 (2020). https://doi.org/10.1007/s11483-020-09631-1

Download citation

Keywords

  • Potato protein isolate
  • Apple pectin
  • Citrus pectin
  • Complex coacervation
  • Bitterness