Biopolymer Coated Nanoliposome as Enhanced Carrier System of Perilla Oil

Abstract

Perilla oil is one of the best sources of plant-based omega-3 fatty acids while its low oxidative stability triggers deteriorative changes of flavour and thereby it’s reduced domestic usage. The present study was aimed at the formation of one-layered and double-layered nanoliposomes for encapsulating perilla seed oil using chitosan, poly-L-lysine, sodium alginate and genipin. Moreover, physical and oxidative stability of developed nanoliposomes and their in vitro release behaviour were investigated. Formation of coated nanoliposomes was confirmed by FT-IR and TEM analysis, where they showed a satisfactory range of size (200–502 nm) and encapsulation efficiency (82–91%). Indeed, chitosan as primary coating and genipin as a GRAS cross-linker could improve physical and oxidative stability of the developed nanoliposomes and all coated nanoliposomes could benefit stability under gastric and intestinal conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    T. Longvah, Y.G. Deosthale, P.U. Kumar, Food Chem. 70(1), 13–16 (2000)

    CAS  Google Scholar 

  2. 2.

    S.S. Umesha, R. Sai Manohar, A.R. Indiramma, S. Akshitha, K. Akhilender Naidu, LWT-Food Sci. Technol. 62, 654–661 (2015)

    CAS  Google Scholar 

  3. 3.

    R. Abuzaytoun, F. Shahidi, Am. Oil Chem. Soc. 83(10), 855–861 (2006)

    CAS  Google Scholar 

  4. 4.

    W. Choo, J. Birch, J. Dufour, J. Food Compos. Anal. 20, 201–211 (2007)

    Google Scholar 

  5. 5.

    K.B. Kim, Y.A. Nam, H. Sik Kim, A.W. Hayes, B.M. Lee, Food Chem. Toxicol. 70, 163–178 (2014)

    CAS  PubMed  Google Scholar 

  6. 6.

    D. McClements, Y. Li, Adv. Colloid Interf. Sci. 159, 213–228 (2010)

    CAS  Google Scholar 

  7. 7.

    M. Hasan, N. Belhaj, H. Benachour, M. Barberi-Heyob, C.J.F. Kahn, E. Jabbari, M. Linder, E. Arab-Tehrany, Int. J. Pharm. 461(1–2), 519–528 (2014)

    CAS  PubMed  Google Scholar 

  8. 8.

    M. Frenzel, A. Steffen-Heins, Food Chem.185, 48–57 (2015a)

    CAS  PubMed  Google Scholar 

  9. 9.

    W. Liu, A. Ye, C. Liu, W. Liu, H. Singh, Food Res. Int. 48(2), 499–506 (2012)

    CAS  Google Scholar 

  10. 10.

    W. Liu, A. Ye, F. Han, J. Han, Adv. Colloid Interf. Sci. 263, 52–67 (2019)

    CAS  Google Scholar 

  11. 11.

    D. Volodkin, V. Ball, P. Schaaf, J.C. Voegel, H. Mohwald, Biochimica et Biophysica Acta (BBA)-Biomembranes 1768(2), 280–290 (2007)

    CAS  Google Scholar 

  12. 12.

    W. Liu, J. Liu, W. Liu, T. Li, C. Liu, J. Agric. Food Chem. 61, 4133–4144 (2013)

    CAS  PubMed  Google Scholar 

  13. 13.

    M. Frenzel, A. Steffen-Heins, Food Chem. 173, 1090–1099 (2015b)

    CAS  PubMed  Google Scholar 

  14. 14.

    W. Liu, W. Liu, A. Ye, S. Peng, F. Wei, C. Liu, J. Han, Food Chem. 196, 396–404 (2016)

    CAS  PubMed  Google Scholar 

  15. 15.

    R. Einarsdottir, M. Gibis, B. Zeeb, K. Kristbergsson, J. Weiss, Food Biophysics 11(4), 417–428 (2016)

    Google Scholar 

  16. 16.

    C. Caddeo, O. Diez-Sales, R. Pons, C. Carbone, G. Ennas, G. Puglisi, A.M. Fadda, M. Manconi, J. Colloid Interface Sci. 461, 69–78 (2016)

    CAS  PubMed  Google Scholar 

  17. 17.

    N. Shahgholian, G. Rajabzadeh, B. Malaekeh-Nikouei, Int. J. Biol. Macromol. 104, 788–798 (2017)

    CAS  PubMed  Google Scholar 

  18. 18.

    F. Song, L.M. Zhang, Ind. Eng. Chem. Res. 48(15), 7077–7083 (2009)

    CAS  Google Scholar 

  19. 19.

    B. Rasti, S. Jinap, M.R. Mozafari, A.M. Yazid, Food Chem. 135(4), 2761–2770 (2012)

    CAS  PubMed  Google Scholar 

  20. 20.

    G. Lepage, C.C. Roy, J. Lipid Res. 27(1), 114–120 (1986)

    CAS  PubMed  Google Scholar 

  21. 21.

    AOAC, Official Methods of Anal. of AOAC Int. 17thedition. Maryland, USA (2002)

  22. 22.

    H. Stöckmann, K. Schwarz, Langmuir 15(19), 6142–6149 (1999)

    Google Scholar 

  23. 23.

    Y. Serfert, S. Drusch, K. Schwarz, Food Chem. 113, 1106–1112 (2009)

    CAS  Google Scholar 

  24. 24.

    M. Minekus, M. Alminger, P. Alvito, S. Ballance, T.O.R.S.T.E.N. Bohn, C. Bourlieu, C. Dufour, Food Funct. 5(6), 1113–1124 (2014)

    CAS  PubMed  Google Scholar 

  25. 25.

    H. Sasaki, K. Karasawa, K. Hironaka, K. Tahara, Y. Tozuka, H. Takeuchi, Eur. J. Pharm. Biopharm. 83(3), 364–369 (2013)

    CAS  PubMed  Google Scholar 

  26. 26.

    M. Gibis, B. Zeeb, J. Weiss, Food Hydrocoll.38, 28–39 (2014)

    CAS  Google Scholar 

  27. 27.

    A.I. Gomaa, C. Martinent, R. Hammami, I. Fliss, M. Subirade, Front. Chem. 5, 103 (2017)

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    C. Laye, D.J. McClements, J. Weiss, J. Food Sci. 73(5), N7–N15 (2008)

    CAS  PubMed  Google Scholar 

  29. 29.

    O. Mertins, R. Dimova, Langmuir 27(9), 5506–5515 (2011)

    CAS  PubMed  Google Scholar 

  30. 30.

    A.O. Elzoghby, W.M. Samy, N.A. Elgindy, Pharm. Res. 30(2), 512–522 (2013)

    CAS  PubMed  Google Scholar 

  31. 31.

    A. Panya, M. Laguerre, J. Lecomte, P. Villeneuve, J. Weiss, D.J. McClements, E.D. Decker, J. Agri, Food Chem. 58, 5679–5684 (2010)

    CAS  Google Scholar 

  32. 32.

    Z.S. Haidar, R.C. Hamdy, M. Tabrizian, Biomaterials 29(9), 1207–1215 (2008)

    CAS  PubMed  Google Scholar 

  33. 33.

    M. Danaei, M. Dehghankhold, S. Ataei, F. Hasanzadeh Davarani, R. Javanmard, A. Dokhani, S. Khorasani, M.R. Mozafari, J. Pharm. 10(2), 57 (2018)

    Google Scholar 

  34. 34.

    M. Mekhail, K. Jahan, M. Tabrizian, Carbohydr. Polym. 108, 91–98 (2014)

    CAS  PubMed  Google Scholar 

  35. 35.

    H. Chen, W. Ouyang, C. Martoni, F. Afkhami, B. Lawuyi, T. Lim, S. Prakash, Int. J. Polymer Sci. 2010, 1–10 (2010)

    Google Scholar 

  36. 36.

    T.M. Taylor, S. Gaysinsky, P.M. Davidson, B.D. Bruce, J. Weiss, Food Biophysics 2(1), 1–9 (2007)

    Google Scholar 

  37. 37.

    R.A. Muzzarelli, Carbohydr. Polym. 77(1), 1–9 (2009)

    CAS  Google Scholar 

  38. 38.

    M. Jimenez, H.S. Garcia, C.I. Beristain, J. Sci. Food Agric. 86(14), 2431–2437 (2006)

    CAS  Google Scholar 

  39. 39.

    J. Heuvingh, S. Bonneau, Biophys. J. 97(11), 2904–2912 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    L. Salvia-Trujillo, E.A. Decker, D.J. McClements, Food Hydrocoll. 52, 690–698 (2016)

    CAS  Google Scholar 

  41. 41.

    J. Zhang, J. Han, A. Ye, W. Liu, M. Tian, Y. Lu, & M. P. Lou, Food Biophysics 1–13 (2019)

  42. 42.

    L.G. Hermida, M. Sabés-Xamaní, R. Barnadas-Rodríguez, J. Liposome Res. 19(3), 207–219 (2009)

  43. 43.

    J.S. Lee, H.W. Kim, D. Chung, H.G. Lee, Food Hydrocoll. 23(8), 2226–2233 (2009)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Gh. Rajabzadeh or H. Ezzatpanah.

Ethics declarations

Conflict of Interest

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 60 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zamani-Ghaleshahi, A., Rajabzadeh, G., Ezzatpanah, H. et al. Biopolymer Coated Nanoliposome as Enhanced Carrier System of Perilla Oil. Food Biophysics 15, 273–287 (2020). https://doi.org/10.1007/s11483-019-09621-y

Download citation

Keywords

  • Perilla oil
  • Nanoliposome
  • Chitosan
  • Poly-L-lysine
  • Genipin
  • Release behaviour