Skip to main content
Log in

Fabrication and Characterization of Curcumin-Loaded Complex Coacervates Made of Gum Arabic and Whey Protein Nanofibrils

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In this research, gum Arabic (GA) and whey protein nanofibrils (WPN) were employed for the encapsulation of curcumin as a bioactive compound with low water solubility through the complex coacervation method. The optimum conditions for the formation of complex coacervates were found at WPN/GA weight ratio of 1:1 and pH value of 3.0. The resulting complexes showed a high ability for loading of curcumin as a bioactive cargo. Fluorescence spectroscopy showed that the curcumin was loaded in the hydrophobic core of WPN/GA coacervates. The characteristics of curcumin-loaded coacervates were also evaluated by XRD and FT-IR analysis. The curcumin-loaded complex coacervates dispersions showed a shear thinning behavior. They also showed a good surface activity which makes them excellent candidates to fabricate new functional food emulsions and beverages. The results indicated that the antioxidant activity and photo-stability of curcumin were significantly improved by encapsulation into WPN/GA complexes. A sustained-release profile also was investigated for curcumin from WPN/GA complexes in the simulated gastrointestinal conditions. This study suggested that the WPN/GA electrostatic-driven complexes can be used as efficient carriers for curcumin delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Tapal, P.K. Tiku, Food Chem. 130(4), 960–965 (2012)

    Article  CAS  Google Scholar 

  2. Y. Liu, D. Ying, Y. Cai, X. Le, Food Hydrocoll. 72, 304–311 (2017)

    Article  CAS  Google Scholar 

  3. A. Anitha, V.G. Deepagan, V.D. Rani, D. Menon, S.V. Nair, R. Jayakumar, Carbohydr. Polym. 84(3), 1158–1164 (2011)

    Article  CAS  Google Scholar 

  4. F.P. Chen, B.S. Li, C.H. Tang, Food Res. Int. 75, 157–165 (2015)

    Article  CAS  Google Scholar 

  5. Y. Liu, Y. Cai, D. Ying, Y. Fu, Y. Xiong, X. Le, Int. J. Biol. Macromol. 116, 893–900 (2018)

    Article  CAS  Google Scholar 

  6. X. Huang, X. Huang, Y. Gong, H. Xiao, D.J. McClements, K. Hu, Food Res. Int. 87, 1–9 (2016)

    Article  CAS  Google Scholar 

  7. C. Chang, T. Wang, Q. Hu, M. Zhou, J. Xue, Y. Luo, Food Hydrocoll. 70, 143–151 (2017)

    Article  CAS  Google Scholar 

  8. Y. Wu, X. Wang, Int. J. Food Prop. 20(12), 3295–3307 (2017)

    Article  CAS  Google Scholar 

  9. J. Xue, Y. Zhang, G. Huang, J. Liu, M. Slavin, L.L. Yu, Food Hydrocoll. 83, 25–35 (2018)

    Article  CAS  Google Scholar 

  10. N. Shahgholian, G. Rajabzadeh, Food Hydrocoll. 59, 17–25 (2016)

    Article  CAS  Google Scholar 

  11. L. Maldonado, R. Sadeghi, J. Kokini, Colloids Surf. B Biointerfaces 159, 759–769 (2017)

    Article  CAS  Google Scholar 

  12. G. You, X.L. Liu, M.M. Zhao, Food Hydrocoll. 74, 255–266 (2018)

    Article  CAS  Google Scholar 

  13. D. Eratte, B. Wang, K. Dowling, C.J. Barrow, B.P. Adhikari, Food Funct. 5(11), 2743–2750 (2014)

    Article  CAS  Google Scholar 

  14. S.K. Ng, K.L. Nyam, O.M. Lai, I.A. Nehdi, G.H. Chong, C.P. Tan, LWT-Food Sci. Technol. 82, 311–317 (2017)

    Article  CAS  Google Scholar 

  15. M. Mohammadian, A. Madadlou, Trends Food Sci. Technol. 75, 115–128 (2018)

    Article  CAS  Google Scholar 

  16. M. Mohammadian, M. Salami, S. Momen, F. Alavi, Z. Emam-Djomeh, A.A. Moosavi-Movahedi, Food Hydrocoll. 87, 902–914 (2019)

    Article  CAS  Google Scholar 

  17. R.A. Mantovani, J. Fattori, M. Michelon, R.L. Cunha, Food Hydrocoll. 60, 288–298 (2016)

    Article  CAS  Google Scholar 

  18. M. Salehiabar, H. Nosrati, E. Javani, F. Aliakbarzadeh, H.K. Manjili, S. Davaran, H. Danafar, Int. J. Biol. Macromol. 115, 83–89 (2018)

    Article  CAS  Google Scholar 

  19. S.M. Loveday, J. Su, M.A. Rao, S.G. Anema, H. Singh, Int. Dairy J. 26(2), 133–140 (2012)

    Article  CAS  Google Scholar 

  20. S.F. Mirpoor, S.M.H. Hosseini, G.H. Yousefi, Food Hydrocoll. 71, 216–224 (2017)

    Article  CAS  Google Scholar 

  21. B. Muhoza, S. Xia, J. Cai, X. Zhang, E. Duhoranimana, J. Su, Food Hydrocoll. 87, 712–722 (2019)

    Article  CAS  Google Scholar 

  22. S.G. Gorji, E.G. Gorji, M.A. Mohammadifar, A. Zargaraan, Int. J. Biol. Macromol. 67, 503–511 (2014)

    Article  Google Scholar 

  23. X. Wang, J. Lee, Y.W. Wang, Q. Huang, Biomacromolecules 8(3), 992–997 (2007)

    Article  CAS  Google Scholar 

  24. Z. Gao, Y. Huang, B. Hu, K. Zhang, X. Xu, Y. Fang, K. Nishinari, G.O. Phillips, J. Yang, Colloids Surf. A Physicochem. Eng. Asp. 562, 1–7 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support from University of Tehran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Salami.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadian, M., Salami, M., Alavi, F. et al. Fabrication and Characterization of Curcumin-Loaded Complex Coacervates Made of Gum Arabic and Whey Protein Nanofibrils. Food Biophysics 14, 425–436 (2019). https://doi.org/10.1007/s11483-019-09591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09591-1

Keywords

Navigation