Skip to main content

Advertisement

Log in

Water Crystallisation of Model Sugar Solutions with Nanobubbles Produced from Dissolved Carbon Dioxide

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This study was conducted to examine the influence of CO2 nanobubbles on crystallisation behaviour of water during freezing of model sugar (2–5%w/v) solutions. CO2 gas was dissolved at 0, 1000, and 2000-ppm concentrations before freezing. Carbonated sugar solutions in 50 mL plastic tubes were immersed in a pre-cooled (−15 °C) ethylene glycol bath and left to freeze at −15 °C for 90 min. When the temperature of the solutions reached 0 °C, ultrasound (US; 20 kHz) was emitted in the bath for 20 s duration through a metal horn transducer. The US wave applied in the ethylene glycol bath was expected to propagate to the sugar solutions in the tube and promote gas bubble formation from dissolved CO2, which will trigger the ice nucleation. Obtained freezing curves were analysed for nucleation time and temperature, supercooling degree, and time taken for phase change. In general, the CO2 gas promoted freezing of water, causing a noticeable shift in nucleation parameters. For example, nucleation time of 2000-ppm carbonated water coupled with sonication emission for 20 s (7.8 min) was much shorter than that of controls (pure water without any treatment = 19.1 min and US only = 14.3 min). The former initiated ice nucleation just below sub-zero temperature (−0.2 °C) whereas the onset temperature of controls (pure water without any treatment = −11.3 °C and the US only treatment = −10.3 °C). A similar effect was observed with different model sugar solutions. The current findings can be applied to refine the manufacturing process of ice-cream and frozen desserts by the food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Kiani, D.W. Sun, Trends Food Sci. Technol. 22(8), 407–426 (2011)

    Article  CAS  Google Scholar 

  2. X.F. Cheng, M. Zhang, B. Xu, B. Adhikari, J. Sun, Ultrason. Sonochem. 27, 576–585 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. R. Chow, R. Blindt, R. Chivers, M. Povey, Ultrasonics 43(4), 227–230 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. H. Kiani, Z.H. Zhang, A. Delgado, D.W. Sun, Food Res. Int. 44(9), 2915–2921 (2011)

    Article  CAS  Google Scholar 

  5. B.G. Xu, M. Zhang, B. Bhandari, J. Sun, Z. Gao, Innov. Food Sci. Emerg. Technol. 35, 194–203 (2016)

    Article  CAS  Google Scholar 

  6. L. Zheng, D.-W. Sun, Trends Food Sci. Technol. 17(1), 16–23 (2006)

    Article  CAS  Google Scholar 

  7. G. Petzold, J.M. Aguilera, Food Biophys. 4(4), 378–396 (2009)

    Article  Google Scholar 

  8. R. Chow, R. Blindt, R. Chivers, M. Povey, Ultrasonics 41(8), 595–604 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. T. Hozumi, A. Saito and S. Okawa, in Advances in cold-region thermal engineering and sciences. lecture notes in physics hutter, ed. by K., Wang Y., Beer H. (Springer Berlin, Heidelberg, 1999)

  10. T. Inada, X. Zhang, A. Yabe, Y. Kozawa, Int. J. Heat Mass Transf. 44(23), 4523–4531 (2001)

    Article  CAS  Google Scholar 

  11. H. Kiani, D.W. Sun, A. Delgado, Z. Zhang, Ultrason. Sonochem. 19(3), 576–581 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. M. Saclier, R. Peczalski, J. Andrieu, Chem. Eng. Sci. 65(10), 3064–3071 (2010)

    Article  CAS  Google Scholar 

  13. J.M. Auleda, M. Raventos, J. Sanchez, E. Hernandez, J. Food Eng. 105(2), 289–294 (2011)

    Article  CAS  Google Scholar 

  14. Y. Xin, M. Zhang, B. Adhikari, Ultrason. Sonochem. 21(5), 1728–1735 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. J. Chandrapala, T. Leong, Food Eng. Rev. 7(2), 143–158 (2015)

    Article  Google Scholar 

  16. M.J. Povey, Curr. Opin. Colloid Interface Sci. 28, 1–6 (2016)

    Article  Google Scholar 

  17. P. Zhang, Z. Zhu, D.W. Sun, Crit. Rev. Food Sci. Nutr. 58(16), 2842–2853 (2018)

    Article  PubMed  Google Scholar 

  18. B.M. Adhikari, T. Truong, N. Bansal, B. Bhandari, Food Bioprod. Process. 109, 86–97 (2018)

    Article  CAS  Google Scholar 

  19. A. Xun, T. Truong, B. Bhandari, Food Biophys 12(1), 52–59 (2016)

    Article  Google Scholar 

  20. T. Truong, M. Palmer, N. Bansal, B. Bhandari, Food Res. Int. 95, 82–90 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. T. Truong, M. Palmer, N. Bansal, B. Bhandari, Int. Dairy J. 93, 45–56 (2019)

    Article  CAS  Google Scholar 

  22. K. Wohlgemuth, A. Kordylla, F. Ruether, G. Schembecker, Chem. Eng. Sci. 64(19), 4155–4163 (2009)

    Article  CAS  Google Scholar 

  23. K. Wohlgemuth, F. Ruether, G. Schembecker, Chem. Eng. Sci. 65(2), 1016–1027 (2010)

    Article  CAS  Google Scholar 

  24. A.A. Ceyhan, O. Baytar, E. Pehlivan, Acta Chim. Slov. 61(2), 391–397 (2014)

    PubMed  Google Scholar 

  25. T. Kleetz, R. Scheel, G. Schembecker, K. Wohlgemuth, Cryst. Growth Des. 18(9), 4906–4910 (2018)

    Article  CAS  Google Scholar 

  26. T. Kleetz, F. Braak, N. Wehenkel, G. Schembecker, K. Wohlgemuth, Cryst. Growth Des. 16(3), 1320–1328 (2016)

    Article  CAS  Google Scholar 

  27. V.S. Nalajala, V.S. Moholkar, Ultrason. Sonochem. 18(1), 345–355 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. D. Yu, B. Liu, B. Wang, Ultrason. Sonochem. 19(3), 459–463 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. F. Hu, D.W. Sun, W.H. Gao, Z.H. Zhang, X.A. Zeng, Z. Han, Innov. Food Sci. Emerg. Technol. 20, 161–166 (2013)

    Article  CAS  Google Scholar 

  30. Z.W. Zhu, D.W. Sun, Z. Zhang, Y.F. Li, L.N. Cheng, LWT-Food Sci. Technol. 92, 404–411 (2018)

    Article  CAS  Google Scholar 

  31. T. Hozumi, A. Saito, S. Okawa, T. Matsui, Int. J. Refrig. 25(7), 948–953 (2002)

    Article  CAS  Google Scholar 

  32. B.M. Adhikari, T. Truong, N. Bansal, B. Bhandari, Crit. Rev. Food Sci. Nutr. 58(15), 2557–2569 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. T. Truong, M. Palmer, N. Bansal, B. Bhandari, Food Chem. 237, 667–676 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. K. Brabec, V. Mornstein, Cent. Eur. J. Biol. 2(2), 213–221 (2007)

    Google Scholar 

  35. T.J. Matula, Philos. Trans. R. Soc. Lond. A 357(1751), 225–249 (1999)

    Article  CAS  Google Scholar 

  36. R.J. Wood, J. Lee, M.J. Bussemaker, Ultrason. Sonochem. 38, 351–370 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, Fundamentals of acoustics, 4th edn. (Wiley-VCH, 1999), pp. 560. ISBN 0-471-84789-5

  38. S. Majumdar, P.S. Kumar, A.B. Pandit, Ultrason. Sonochem. 5(3), 113–118 (1998)

    Article  CAS  PubMed  Google Scholar 

  39. M. S. Rahman, N. Guizani, M. Al-Khaseibi, S. A. Al-Hinai, S. S. Al-Maskri and K. Al-Hamhami, Food Hydrocoll. 16(6), 653–659 (2002)

  40. F.Y. Ushikubo, T. Furukawa, R. Nakagawa, et al., Colloids Surf. A Physicochem. Eng. Asp. 361, 31–37 (2010)

    Article  CAS  Google Scholar 

  41. W. Cui, L. Jia, Y. Chen, Y. Li, J. Li, S. Mo, Nanoscale Res. Lett. 13(1), 145 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Z.W. Zhu, Z.B. Chen, Q.Y. Zhou, et al., Food Bioprocess Technol. 11(9), 1615–1626 (2018)

    Article  CAS  Google Scholar 

  43. A.E. Delgado, D.-W. Sun, J. Food Eng. 47(3), 157–174 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support received through an Australian Government Research Training Program Scholarship to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhesh Bhandari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, B.M., Tung, V.P., Truong, T. et al. Water Crystallisation of Model Sugar Solutions with Nanobubbles Produced from Dissolved Carbon Dioxide. Food Biophysics 14, 403–414 (2019). https://doi.org/10.1007/s11483-019-09590-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09590-2

Keywords

Navigation