Skip to main content
Log in

The Influence of Enzymatic Hydrolysis on Adsorption and Interfacial Dilatational Properties of Pumpkin (Cucurbita pepo) Seed Protein Isolate

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Pumpkin seed protein isolate, PSPI, was enzymatically hydrolysed by alcalase to obtain pumpkin seed protein hydrolysate, PSPH. Kinetics of PSPI and PSPH adsorption layer formation at oil–protein solution interface and interfacial dilatational properties of the layers were investigated by the drop profile analysis tensiometer (PAT) in order to determine the influence of enzimatic hydrolysis on the interfacial properties of pumpkin seed proteins. The properties were investigated at different protein solution concentrations (0.0008–0.8 g/100 mL), ionic strengths (0–0.5 mol/L NaCl), and at two acidic pH (3 and 5, where PSPI’s pI = 5). It was found that both, PSPI and PSPH, contribute to an increase in the interfacial pressure, π, at the oil–protein solution interface and form the interfacial proteinaceous films. Dilatational elasticity, E’, of the interfacial films was found to be a few times higher than the dilatational viscosity, E”, regardless of the experimental conditions. The obtained diffusion rate and adsorption rate constants, kdiff and kads respectively, were higher for PSPH than for PSPI. kdiff was found to increase as protein concentration was increased, and to decrease as ionic strength was increased, for both PSPI and PSPH. At pI = 5, PSPH showed an increased π and E’, as well as mitigated influence of ionic strength on kads when compared to PSPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.R.R. Niño, C.C. Sánchez, V.P. Ruíz-Henestrosa, J.M.R. Patino, Food Hydrocoll. 19, 417–428 (2005)

    Article  CAS  Google Scholar 

  2. R.S.H. Lam, M.T. Nickerson, Food Chem. 141(2), 975–984 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. E. Dickinson, Colloids Surf. B: Biointerfaces 15(2), 161–176 (1999)

    Article  CAS  Google Scholar 

  4. I.M. Rodrigues, J.F.J. Coelho, M.G.V.S. Carvalho, J. Food Eng. 109(3), 337–346 (2012)

    Article  CAS  Google Scholar 

  5. L. Rezig, F. Chibani, M. Chouaibi, M. Dalgalarrondo, K. Hessini, J. Guéguen, S. Hamdi, J. Agric. Food Chem. 61(32), 7715–7721 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. A. Moure, J. Sineiro, H. Domínguez, J.C. Parajo, Food Res. Int. 39(9), 945–963 (2006)

    Article  CAS  Google Scholar 

  7. M.F. Marcone, Food Res. Int. 32(2), 79–92 (1999)

    Article  CAS  Google Scholar 

  8. Ž. Vaštag, L. Popović, S. Popović, V. Krimer, D. Peričin, Food Chem. 124(4), 1316–1321 (2011)

    Article  CAS  Google Scholar 

  9. G. Fruhwirth, A. Hermetter, Eur. J. Lipid Sci. Technol. 109(11), 1128–1140 (2007)

    Article  CAS  Google Scholar 

  10. E.F. Fang, J.H. Wong, P. Lin, T.B. Ng, FEBS Lett. 584(18), 4089–4096 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. S. Bučko, J. Katona, L. Popović, Ž. Vaštag, L. Petrović, M. Vučinić-Vasić, LWT - Food Sci. Technol. 64(2), 609–615 (2015)

    Article  CAS  Google Scholar 

  12. S.N. Jamdar, V. Rajalakshmi, M.D. Pednekar, F. Juan, V. Yardi, A. Sharma, Food Chem. 121(1), 178–184 (2010)

    Article  CAS  Google Scholar 

  13. A. Clemente, Trends Food Sci. Technol. 11(7), 254–262 (2000)

    Article  CAS  Google Scholar 

  14. L. Day, Trends Food Sci. Technol. 32(1), 25–42 (2013)

    Article  CAS  Google Scholar 

  15. S. Bučko, J. Katona, L. Popović, L. Petrović, J. Milinković, Food Hydrocoll. 60, 271–278 (2016)

    Article  CAS  Google Scholar 

  16. L. Popović, D. Peričin, Ž. Vaštag, S. Popović, V. Krimer, A. Torbica, J. Am. Oil Chem. Soc. 90(8), 1157–1165 (2013)

    Article  CAS  Google Scholar 

  17. O.H. Lowry, N.J. Rosenbrough, A.L. Fair, R.J. Randall, J. Biol. Chem. 193(1), 265–275 (1951)

    CAS  PubMed  Google Scholar 

  18. C.–.H. Tang, L. Shen, Food Hydrocoll. 43, 388–399 (2015)

    Article  CAS  Google Scholar 

  19. A.F.H. Ward, L. Tordai, J. Chem. Phys. 14(7), 453–461 (1946)

    Article  CAS  Google Scholar 

  20. V.P. Ruíz-Henestrosa, C.C. Sánchez, J.J. Pedroche, F. Millán, J.M.R. Patino, Food Hydrocoll. 23(2), 377–386 (2009)

    Article  CAS  Google Scholar 

  21. M. Jarpa-Parra, F. Bamdad, Z. Tian, H. Zeng, F. Temelli, L. Chen, Colloids Surf. B: Biointerfaces 132, 45–53 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. A. Romero, V. Beaumal, E. David-Briand, F. Cordobes, A. Guerrero, M. Anton, Food Hydrocoll. 29(1), 1–8 (2012)

    Article  CAS  Google Scholar 

  23. M. Yuliana, C.T. Truong, L.H. Huynh, Q.P. Ho, Y.-H. Ju, LWT - Food Sci Technol 55(2), 621–626 (2014)

    Article  CAS  Google Scholar 

  24. R. Wüstneck, V.B. Fainerman, E.V. Aksenenko, C. Kotsmar, V. Pradines, J. Krägel, R. Miller, Colloids Surf. A Physicochem. Eng. Asp. 404, 17–24 (2012)

    Article  CAS  Google Scholar 

  25. K.D. Martínez, C.C. Sánchez, J.M.R. Patino, A.M.R. Pilosof, Food Hydrocoll. 23(8), 2149–2157 (2009)

    Article  CAS  Google Scholar 

  26. J.M.R. Patino, M.R.R. Niño, C.C. Sánchez, S.E.M. Oritz, M.C. Añón, J. Food Eng. 68(4), 429–437 (2005)

    Article  Google Scholar 

  27. A.J. Bolontrade, A.A. Scilingo, M.C. Añón, Colloids Surf. B: Biointerfaces 141, 643–650 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. V.P. Ruíz-Henestrosa, C.C. Sánchez, M.D.M.Y. Escobar, J.J.P. Jiménez, F.M. Rodríguez, J.M.R. Patino, Colloids Surf. A: Physicochem. Eng. Asp. 309(1-3), 202–215 (2007)

    Article  CAS  Google Scholar 

  29. B.A. Noskov, D.O. Grigoriev, A.V. Latnikova, S.–.Y. Lin, G. Loglio, R. Miller, J. Phys. Chem. B 113(40), 13398–13404 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No III 46010 and the Provincial Secretariat for Higher Education and Scientific Research of the Autonomous Province of Vojvodina, Grant No 142-451-3680/2017-01/01. It is done within COST CM1101 and MP1106 action framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Katona.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bučko, S., Katona, J., Petrović, L. et al. The Influence of Enzymatic Hydrolysis on Adsorption and Interfacial Dilatational Properties of Pumpkin (Cucurbita pepo) Seed Protein Isolate. Food Biophysics 13, 217–225 (2018). https://doi.org/10.1007/s11483-018-9528-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-018-9528-5

Keywords

Navigation