Food Biophysics

, Volume 13, Issue 1, pp 102–111 | Cite as

Novel Multifunctional and Edible Film Based on Phenyllactic Acid Grafted Chitosan Derivative and Nano Zinc Oxide

  • Rui Li
  • Xun Sun
  • Junxiang Zhu
  • Dongfeng Wang
  • Ying Xu


This work aims at developing a novel multifunctional and edible film through incorporating nano zinc oxide to phenyllactic acid grafted chitosan (ZnO/PLA-g-CS) film. The resulting film exhibited improved mechanical properties (tensile strength and elongation-at-break) than chitosan film (P < 0.05). The protecting effect of the biodegradable film on Taiwan green jujube during storage was investigated. After 21 days of storage, the weight loss, and rotting rate of the fruits treated with ZnO/PLA-g-CS film were significantly reduced (P < 0.05). In addition, ZnO/PLA-g-CS film caused a higher (P < 0.05) retention of ascorbic acid, total phenol, total soluble solids and malondialdehyde content in fruits. 44.73% and 63.28% of omethoate pesticide and chlorpyrifos pesticide degraded after 72 h treatment of ZnO/PLA-g-CS in aqueous solution, which were 38.05% and 32.71% higher than those of the control, respectively. Furthermore, the film showed good catalytical capacity to the hydrolysis of both omethoate and chlorpyrifos. These results suggested that ZnO/PLA-g-CS film could effectively retard postharvest loss of fruits and can potentially be used as a multifunctional preservative that improves the quality and safety of fruits during storage.


Multifunctional film Edible Taiwan green jujube Preservation Food safety Organophosphorus pesticides 



This work was supported by the National Science and Technology Support Program (Grant No. 2015BAD16B06), the Independent Innovation Major Project of Huangdao District Qingdao City (Grant No. 2014-3-11), and the National Natural Science Foundation of China (Grant No. 31371731).


  1. 1.
    D. Valero, M. Serrano, Postharvest Biology and Technology for Preserving Fruit Quality (CRC Press, Boca Raton, 2010), pp. 1–7CrossRefGoogle Scholar
  2. 2.
    F. Devlieghere, L. Vermeiren, J. Debevere, Int. Dairy J. 14(4), 273–285 (2004)CrossRefGoogle Scholar
  3. 3.
    K.G. Harding, J.S. Dennis, H. Von Blottnitz, S.T.L. Harrison, J. Biotechnol. 130(1), 57–66 (2007)CrossRefGoogle Scholar
  4. 4.
    C.N. Cutter, Meat Sci. 74(1), 131–142 (2006)CrossRefGoogle Scholar
  5. 5.
    S.B. Schreiber, J.J. Bozell, D.G. Hayes, S. Zivanovic, Food Hydrocoll. 33(2), 207–214 (2013)CrossRefGoogle Scholar
  6. 6.
    R. Li, X. Sun, Y. Xu, Q. Zhong, D. Wang, Food Biophys. 12(4), 470–478 (2017)CrossRefGoogle Scholar
  7. 7.
    B. Wang, W. Feng, M. Wang, T. Wang, Y. Gu, M. Zhu, H. Ouyang, J. Shi, F. Zhang, Y. Zhao, Z. Chai, J. Nanopart. Res. 10(2), 263–276 (2008)CrossRefGoogle Scholar
  8. 8.
    R.P. Singh, V.K. Shukla, R.S. Yadav, P.K. Sharma, P.K. Singh, A.C. Pandey, Adv. Mater. Lett. 2(4), 313–317 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Moezzi, A.M. McDonagh, M.B. Cortie, Chem. Eng. J. 185, 1–22 (2012)CrossRefGoogle Scholar
  10. 10.
    N. Daneshvar, S. Aber, M.S. Dorraji, A.R. Khataee, M.H. Rasoulifard, Sep. Purif. Tech. 58(1), 91–98 (2007)CrossRefGoogle Scholar
  11. 11.
    A.K. Purohit, T.S. Rawat, A. Kumar, Plant Foods Hum. Nutr. 58(3), 1–7 (2003)CrossRefGoogle Scholar
  12. 12.
    ASTM E96 / E96M-16, Standard Test Methods for Water Vapor Transmission of Materials (ASTM International, West Conshohocken, 2016),
  13. 13.
    ASTM D1003–13, Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics (ASTM International, West Conshohocken, 2013),
  14. 14.
    D. Ren, H. Yi, W. Wang, X. Ma, Carbohydr. Res. 340(15), 2403–2410 (2005)CrossRefGoogle Scholar
  15. 15.
    L. Suntornsuk, W. Gritsanapun, S. Nilkamhank, A. Paochom, J. Pharm. Biomed. Anal. 28(5), 849–855 (2002)CrossRefGoogle Scholar
  16. 16.
    C. Xiao, L. Zhu, W. Luo, X. Song, Y. Deng, Food Chem. 121(4), 1003–1009 (2010)CrossRefGoogle Scholar
  17. 17.
    K. Shah, R.G. Kumar, S. Verma, R.S. Dubey, Plant Sci. 161(6), 1135–1144 (2001)CrossRefGoogle Scholar
  18. 18.
    Y. Fan, Y. Xu, D. Wang, L. Zhang, J. Sun, L. Sun, B. Zhang, Postharvest Biol Tec. 53(1–2), 84–90 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Mathew, T.E. Abraham, Food Hydrocoll. 22(5), 826–835 (2008)CrossRefGoogle Scholar
  20. 20.
    A.M. Youssef, S.M. El-Sayed, H.S. El-Sayed, H.H. Salama, A. Dufresne, Carbohydr. Polym. 151, 9–19 (2016)CrossRefGoogle Scholar
  21. 21.
    C.H. Chen, L.S. Lai, Food Hydrocoll. 22(8), 1584–1595 (2008)CrossRefGoogle Scholar
  22. 22.
    J. Yu, J. Yang, B. Liu, X. Ma, Bioresour. Technol. 100(11), 2832–2841 (2009)CrossRefGoogle Scholar
  23. 23.
    M. Souza, A.F. Vaz, H. Silva, M.A. Cerqueira, A.A. Vicente, M.G. Carneiro-da-Cunha, Food Bioprocess Technol. 8(11), 2183–2191 (2015)CrossRefGoogle Scholar
  24. 24.
    Á.M. Lima, M.A. Cerqueira, B.W. Souza, E.C.M. Santos, J.A. Teixeira, R.A. Moreira, A.A. Vicente, J. Food Eng. 97(1), 101–109 (2010)CrossRefGoogle Scholar
  25. 25.
    P. Fajardo, J.T. Martins, C. Fuciños, L. Pastrana, J.A. Teixeira, A.A. Vicente, J. Food Eng. 101(4), 349–356 (2010)CrossRefGoogle Scholar
  26. 26.
    E.L. Cussler, S.E. Highes, W.J. Ward, R. Aris, J. Membr. Sci. 38, 161–174 (1998)CrossRefGoogle Scholar
  27. 27.
    M. Pereda, G. Amica, N.E. Marcovich, Carbohydr. Polym. 87(2), 1318–1325 (2012)CrossRefGoogle Scholar
  28. 28.
    O.V. López, M.A. García, Mater. Sci. Eng. C 32(7), 1931–1940 (2012)CrossRefGoogle Scholar
  29. 29.
    O. Etienne, A. Schneider, C. Taddei, L. Richert, P. Schaaf, J.C. Voegel, L. Richert, P. Schaaf, J.C. Voegel, C. Egles, C. Picart, Biomacromolecules 6, 726–733 (2005)CrossRefGoogle Scholar
  30. 30.
    R.J. Nordtveit, K.M. Varum, O. Smidsrod, Carbohydr. Polym. 29, 163–167 (1996)CrossRefGoogle Scholar
  31. 31.
    A.R. Costa-Pinto, A.M. Martins, M.J. Castelhano-Carlos, V.M. Correlo, P.C. Sol, A. Longatto-Filho, M. Battacharya, R.L. Reis, N.M. Neves, J. Bioact. Compat. Polym. 29(2), 137–151 (2014)CrossRefGoogle Scholar
  32. 32.
    C. Amarante, N.H. Banks, S. Ganesh, Postharvest Biol. Technol. 21(3), 291–301 (2001)CrossRefGoogle Scholar
  33. 33.
    T.R. Rao, N.S. Baraiya, P.B. Vyas, D.M. Patel, J. Food Sci. Tech. 53(1), 748 (2016)CrossRefGoogle Scholar
  34. 34.
    X. Kou, Y. Li, J. Wu, Q. Chen, Z. Xue, Trans. Tianjin Univ. 23(1), 51–61 (2017)CrossRefGoogle Scholar
  35. 35.
    Z.L. Wang, J. Phys.-Condens. Matter 16, R829–R858 (2004)CrossRefGoogle Scholar
  36. 36.
    Q.P. Zhong, W.S. Xia, LWT-Food Sci. Technol. 40(3), 404–411 (2007)CrossRefGoogle Scholar
  37. 37.
    T. Jiang, L. Feng, X. Zheng, J. Agric. Food Chem. 60(1), 188–196 (2011)CrossRefGoogle Scholar
  38. 38.
    Z. Ye, R. Rodriguez, A. Tran, H. Hoang, D. de Los Santos, S. Brown, Plant Sci. 158, 115–127 (2000)CrossRefGoogle Scholar
  39. 39.
    G. Romanazzi, E. Feliziani, S.B. Baños, D. Sivakumar, Crit. Rev. Food Sci. 57(3), 579–601 (2017)CrossRefGoogle Scholar
  40. 40.
    M. Viuda-Martos, Y. Ruiz-Navajas, J. Fernández-López, E. Sendra, E. Sayas-Barberá, J.A. Pérez-Álvarez, Food Res. Int. 44(5), 1217–1223 (2011)CrossRefGoogle Scholar
  41. 41.
    Y. Xing, Q. Xu, Z. Che, X. Li, W. Li, Food Funct. 2(8), 466–474 (2011)CrossRefGoogle Scholar
  42. 42.
    R. Sapbamrer, S. Hongsibsong, Arch. Environ. Contam. Toxicol. 67(1), 60–67 (2014)CrossRefGoogle Scholar
  43. 43.
    J.C. Barreiro, M.D. Capelato, L. Martin-Neto, H. HCB, Water Res. 41(1), 55–62 (2007)CrossRefGoogle Scholar
  44. 44.
    A. El Masri, M. Al Rashidi, H. Laversin, A. Chakir, E. Roth, RSC Adv. 4(47), 24786–24795 (2014)CrossRefGoogle Scholar
  45. 45.
    A. Muñoz, M. Ródenas, E. Borrás, M. Vázquez, T. Vera, Chemosphere 111, 522–528 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rui Li
    • 1
  • Xun Sun
    • 1
  • Junxiang Zhu
    • 2
  • Dongfeng Wang
    • 1
  • Ying Xu
    • 1
  1. 1.College of Food Science and EngineeringOcean University of ChinaQingdaoPeople’s Republic of China
  2. 2.Marine Fisheries Research Institute of ZhejiangZhoushanPeople’s Republic of China

Personalised recommendations