Skip to main content
Log in

Re-Designing Clouds to Increase Turbidity in Beverage Emulsions

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Clouds represent oil-in-water emulsions, which are used to create a turbid appearance in beverage emulsions. Aim of the present study was to investigate whether crystalline structures at the oil-water interface or a solidified dispersed phase sufficiently increase the refractive index difference between the two phases to create turbidity in a more efficient manner. Bulk materials and dispersions were characterized by differential scanning calorimetry and time-domain-NMR for crystal structure and solid fat content, respectively. Use of high melting emulsifiers (HME), 1% sodium stearoyl lactylate (SSL), 1% glyceryl stearoyl citrate (GSC), respectively 1.5% phospholipid (PL) did not result in an increase in turbidity. Data indicate that the emulsifiers did not crystallize at the interface. However, modification of the dispersed phase with high melting lipids (HML) was successful. Using fats with increasing melting point, it was shown that turbidity increased with increasing degree of crystallinity. Compared to a liquid medium chain triglyceride (MCT) turbidity increased significantly from 290 NTU (ratio) using hydrogenated palm fat (HPF, 400 NTU (ratio)) or tristearin (SSS, 440 NTU (ratio)) instead. In order to induce that effect, a critical degree of crystallinity of more than 36% needed to be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Shachman, The Soft Drinks Companion: A Technical Handbook for the Beverage Industry (CRC press LCC, Boca Raton, 2004). https://doi.org/10.1201/9780203492123

    Book  Google Scholar 

  2. C.-T. Tan, Beverage flavor emulsion—A form of emulsion liquid membrane microencapsulation. In: E.T. Contis, C.-T. Ho, C.J. Mussinan, T.H. Parliment, Fereidoon Shahidi, A.M. Spanier (Hg.): Food Flavors: Formation, Analysis and Packaging Influences, Proceedings of the 9th International Flavor Conference The George Charalambous Memorial Symposium, Bd. 40: Elsevier (Developments in Food Science, 40), S. 29–42 (1998)

  3. R. Buffo, G. Reineccius, G. Oehlert, Food Hydrocoll. 15(1), 53–66 (2001). https://doi.org/10.1016/S0268-005X(00)00050-3

    Article  CAS  Google Scholar 

  4. R.A. Buffo, G.A. Reineccius, G.W. Oehlert, J. Food Eng. 51(4), 341–345 (2002). https://doi.org/10.1016/S0260-8774(01)00076-0

    Article  Google Scholar 

  5. P.S. Given, Curr. Opin. Colloid Interface Sci. 14(1), 43–47 (2009). https://doi.org/10.1016/j.cocis.2008.01.007

    Article  CAS  Google Scholar 

  6. E. Hernandez, R.A. Baker, J Food Science 56(4), 1024–1026 (1991). https://doi.org/10.1111/j.1365-2621.1991.tb14632.x

    Article  Google Scholar 

  7. E. Hernandez, R.A. Baker, P.G. Crandall, J Food Science 56(3), 747–750 (1991). https://doi.org/10.1111/j.1365-2621.1991.tb05373.x

    Article  Google Scholar 

  8. H. Mirhosseini, C.P. Tan, N.S. Hamid, S. Yusof, Food Hydrocoll. 22(7), 1212–1223 (2008). https://doi.org/10.1016/j.foodhyd.2007.06.011

    Article  CAS  Google Scholar 

  9. A.R. Taherian, P. Fustier, H.S. Ramaswamy, J. Food Eng. 77(3), 687–696 (2006). https://doi.org/10.1016/j.jfoodeng.2005.06.073

    Article  CAS  Google Scholar 

  10. C. Linke, S. Drusch, Food Res. Int. 89(Pt 1), 202–210 (2016). https://doi.org/10.1016/j.foodres.2016.07.019

    Article  CAS  Google Scholar 

  11. R.A. Buffo, G.A. Reineccius, Flavour Fragr. J. 16(1), 7–12 (2001). https://doi.org/10.1002/1099-1026(200101/02)16:1<7::AID-FFJ938>3.0.CO;2-A

  12. T.C.A. Almeida, A.L. Larentis, H.C. Ferraz, PLoS One 10(3), e0118690 (2015). https://doi.org/10.1371/journal.pone.0118690

    Article  Google Scholar 

  13. S.M.T. Gharibzahedi, S.M. Mousavi, F. Khodaiyan, M. Hamedi, Int. J. Biol. Macromol. 50(2), 376–384 (2012). https://doi.org/10.1016/j.ijbiomac.2011.12.008

    Article  CAS  Google Scholar 

  14. O. Jacome-Guth, A. Aserin, N. Garti, International Journal of Food Science & Technology 26(3), 249–257 (1991)

    Article  Google Scholar 

  15. E.I. Benitez, D.B. Genovese, J.E. Lozano, Food Res. Int. 40(7), 915–922 (2007). https://doi.org/10.1016/j.foodres.2007.03.004

    Article  CAS  Google Scholar 

  16. C. Giacovazzo (ed.), Fundamentals of Crystallography, 2nd edn. (Oxford Univ. Press, Oxford, 2005)

    Google Scholar 

  17. T. Helgason, H. Salminen, K. Kristbergsson, D.J. McClements, J. Weiss, J. Colloid Interface Sci. 448, 114–122 (2015). https://doi.org/10.1016/j.jcis.2015.02.010

    Article  CAS  Google Scholar 

  18. B. Siekmann, K. Westesen, Colloids Surf. B: Biointerfaces 3(3), 159–175 (1994). https://doi.org/10.1016/0927-7765(94)80063-4

    Article  CAS  Google Scholar 

  19. DIN EN 14103 14103:2011, 2015-05: Fat and oil derivatives – Fatty Acid Methyl Esters (FAME) – Determination of ester and linolenic acid methyl ester contents; German version EN 14103:2011

  20. DIN EN ISO 8292–2:2008:, Animal and vegetable fats and oils - Determination of solid fat content by pulsed NMR - Part 2: Indirect method; German version (Beuth Verlag GmbH, Berlin, 2010–08)

  21. ISO 13320, 2009-10: Particle size analysis - Laser diffraction methods. Beuth Verlag GmbH, Berlin

  22. ISO 9276-2, 2014-05: Darstellung der Ergebnisse von Partikelgrößenanalysen - Teil 2: Berechnung von mittleren Partikelgrößen/-durchmessern und Momenten aus Partikelgrößenverteilungen.Beuth Verlag GmbH, Berlin

  23. DIN EN ISO 7027:2000-04: Water quality—Determination of turbidity (ISO 7027:1999). Beuth Verlag GmbH, Berlin

  24. H.-G. Bueschelberger, in Emulsifiers in Food Technology, ed. by R.J. Whitehurst (Wiley, Hoboken, 2008), p. 1–39

  25. H. Salminen, T. Helgason, B. Kristinsson, K. Kristbergsson, J. Weiss, Food Chem. 141(3), 2934–2943 (2013). https://doi.org/10.1016/j.foodchem.2013.05.120

    Article  CAS  Google Scholar 

  26. H. Salminen, T. Helgason, S. Aulbach, B. Kristinsson, K. Kristbergsson, J. Weiss, J. Colloid Interface Sci. 426, 256–263 (2014). https://doi.org/10.1016/j.jcis.2014.04.009

    Article  CAS  Google Scholar 

  27. H. Salminen, S. Aulbach, B.H. Leuenberger, C. Tedeschi, J. Weiss, Colloids Surf. B: Biointerfaces 122, 46–55 (2014). https://doi.org/10.1016/j.colsurfb.2014.06.045

    Article  CAS  Google Scholar 

  28. K. Westesen, H. Bunjes, M.H.J. Koch, J. Control. Release 48(2–3), 223–236 (1997). https://doi.org/10.1016/S0168-3659(97)00046-1

    Article  CAS  Google Scholar 

  29. N. Garti, J. Yano, In Crystallization processes in fats and lipid systems, ed. by N. Garti, K. Sato (Dekker, New York, 2001), p. 211–250

  30. K. Westesen, B. Siekmann, Int. J. Pharm. 151(1), 35–45 (1997). https://doi.org/10.1016/S0378-5173(97)04890-4

    Article  CAS  Google Scholar 

  31. D. Kurukji, R. Pichot, F. Spyropoulos, I.T. Norton, J. Colloid Interface Sci. 409, 88–97 (2013). https://doi.org/10.1016/j.jcis.2013.07.016

    Article  CAS  Google Scholar 

  32. E. Da Silva, S. Bresson, D. Rousseau, Chem. Phys. Lipids 157(2), 113–119 (2009). https://doi.org/10.1016/j.chemphyslip.2008.11.002

    Article  Google Scholar 

  33. M.J.W. Povey, In Crystallization processes in Fats and Lipid Systems, ed. by N. Garti, K. Sato (Dekker, New York, 2001), p. 251–288

  34. D.J. McClements, S.R. Dungan, J.B. German, C. Simoneau, J.E. Kinsella, J Food Science 58(5), 1148–1151 (1993). https://doi.org/10.1111/j.1365-2621.1993.tb06135.x

    Article  CAS  Google Scholar 

  35. D.J. McClements, Adv. Colloid Interf. Sci. 174, 1–30 (2012). https://doi.org/10.1016/j.cis.2012.03.002

    Article  CAS  Google Scholar 

  36. T. Unruh, H. Bunjes, K. Westesen, M.H.J. Koch, J. Phys. Chem. B 103(47), 10373–10377 (1999). https://doi.org/10.1021/jp9912612

    Article  CAS  Google Scholar 

  37. D. Aquilano, G. Sgualdino, In Crystallization processes in fats and lipid systems, ed. by N. Garti, K. Sato (Dekker, New York, 2001), p. 1–51

  38. R. Montenegro, M. Antonietti, Y. Mastai, K. Landfester, J. Phys. Chem. B 107(21), 5088–5094 (2003). https://doi.org/10.1021/jp0262057

    Article  CAS  Google Scholar 

  39. T. Katsuragi, N. Kaneko, K. Sato, Colloids Surf. B: Biointerfaces 20(3), 229–237 (2001). https://doi.org/10.1016/S0927-7765(00)00175-2

    Article  CAS  Google Scholar 

  40. D. Kalnin, O. Schafer, H. Amenitsch, M. Ollivon, Cryst. Growth Des. 4(6), 1283–1293 (2004). https://doi.org/10.1021/cg030071k

    Article  CAS  Google Scholar 

  41. M. Sakamoto, A. Ohba, J. Kuriyama, K. Maruo, S. Ueno, K. Sato, Colloids Surf. B: Biointerfaces 37(1–2), 27–33 (2004). https://doi.org/10.1016/j.colsurfb.2004.05.017

    Article  CAS  Google Scholar 

  42. H. Bunjes, M.H.J. Koch, J. Control Release: Off. J. ControlRelease Soc. 107(2), 229–243 (2005). https://doi.org/10.1016/j.jconrel.2005.06.004

    Article  CAS  Google Scholar 

  43. DIN EN ISO 8292–1:2010–08: Animal and vegetable fats and oils - Determination of solid fat content by pulsed NMR - Part 1: Direct method; German version 2010, Beuth Verlag GmbH, Berlin

  44. International Union of Pure and Applied Chemistry, 2.150 Solid content determination in fats by NMR (low resolution nuclear magnetic resonance) 1992, Blackwell scientific publications, Oxford

  45. The American Oil Chemists' Society, AOCS Official Method Cd 16–81: Solid Fat Content (SFC) by Low-Resolution Nuclear Magnetic Resonance - The Indirect Method Reapproved 2009, AOCS, S. Boulder

  46. The American Oil Chemists' Society, AOCS Official Method Cd 16-b-93: Solid Fat Content (SFC) by Low-Resolution Nuclear Magnetic Resonance—The Direct Method Reapproved 2009, AOCS, S. Boulder

  47. H. Todt, G. Guthausen, W. Burk, D. Schmalbein, A. Kamlowski, Water/moisture and fat analysis by time-domain NMR, bFood Chemistry 96, 436–440 (2006)

    CAS  Google Scholar 

  48. M.L. Johns, NMR studies of emulsions, Curr. Opin. Colloid Interface Sci. 14(3), 178–183 (2009). https://doi.org/10.1016/j.cocis.2008.10.005

    Article  CAS  Google Scholar 

  49. R. Gianferri, M. Maioli, M. Delfini, E. Brosio, A low-resolution and high-resolution nuclear magnetic resonance integrated approach to investigate the physical structure and metabolic profile of mozzarella di Bufala Campana cheese. Int. Dairy J. 17(2), 167–176 (2007). https://doi.org/10.1016/j.idairyj.2006.02.006

    Article  CAS  Google Scholar 

  50. C. Freitas, R.H. Müller, Eur. J. Pharm. Biopharm. 47(2), 125–132 (1999). https://doi.org/10.1016/S0939-6411(98)00074-5

    Article  CAS  Google Scholar 

  51. T. Helgason, T.S. Awad, K. Kristbergsson, D.J. McClements, J. Weiss, J. Colloid Interface Sci. 334(1), 75–81 (2009). https://doi.org/10.1016/j.jcis.2009.03.012

    Article  CAS  Google Scholar 

  52. N. Seetapan, P. Bejrapha, W. Srinuanchai, U.R. Ruktanonchai, Micron (Oxford, England: 1993) 41(1), 51–58 (2010)

  53. G.T. Fuller, T. Considine, M. Golding, L. Matia-Merino, A. MacGibbon, Food Hydrocoll. 51, 23–32 (2015). https://doi.org/10.1016/j.foodhyd.2015.03.032

    Article  CAS  Google Scholar 

  54. S. Arima, T. Ueji, S. Ueno, A. Ogawa, K. Sato, Colloids Surf. B: Biointerfaces 55(1), 98–106 (2007). https://doi.org/10.1016/j.colsurfb.2006.11.025

    Article  CAS  Google Scholar 

  55. T.S. Awad, T. Helgason, J. Weiss, E.A. Decker, D.J. McClements, Cryst. Growth Des. 9(8), 3405–3411 (2009). https://doi.org/10.1021/cg8011684

    Article  CAS  Google Scholar 

  56. M.B. Munk, A.G. Marangoni, H.K. Ludvigsen, V. Norn, J.C. Knudsen, J. Risbo, R. Ipsen, M.L. Andersen, Food Res. Int. 54(2), 1738–1745 (2013). https://doi.org/10.1016/j.foodres.2013.09.001

    Article  CAS  Google Scholar 

  57. E. Dickinson, F.-J. Kruizenga, M.J. Povey, M. van der Molen, Colloids Surf. A Physicochem. Eng. Asp. 81, 273–279 (1993). https://doi.org/10.1016/0927-7757(93)80255-D

    Article  CAS  Google Scholar 

  58. S. Joseph, M. Rappolt, M. Schoenitz, V. Huzhalska, W. Augustin, S. Scholl, H. Bunjes, Langmuir: ACS J. Surf. Col. 31(24), 6663–6674 (2015). https://doi.org/10.1021/acs.langmuir.5b00874

    Article  CAS  Google Scholar 

  59. M. Schoenitz, S. Joseph, A. Nitz, H. Bunjes, S. Scholl, European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V 86(3), 324–331 (2014)

Download references

Acknowledgments

The authors would like to thank Gerhard Krammer and the Symrise AG for supporting this work. Further, the authors would like to thank Professor Gisela Guthausen from Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruher Institut für Technologie (KIT), for her input and fruitful discussion on TD-NMR results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Linke.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linke, C., Drusch, S. Re-Designing Clouds to Increase Turbidity in Beverage Emulsions. Food Biophysics 13, 91–101 (2018). https://doi.org/10.1007/s11483-018-9515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-018-9515-x

Keywords

Navigation