Skip to main content

Advertisement

Log in

Enhancement of Carotenoid Bioaccessibility from Tomatoes Using Excipient Emulsions: Influence of Particle Size

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

A Correction to this article was published on 01 October 2018

This article has been updated

Abstract

The effect of excipient emulsions with different lipid droplet sizes on carotenoid bioaccessibility from tomatoes was investigated using a simulated gastrointestinal tract (GIT). Excipient emulsions with different surface-weighted mean droplet diameters were fabricated: d 32  = 0.15 μm (small), 0.40 μm (medium), and 22.3 μm (large). Changes in particle size, microstructure, ζ-potential, and carotenoid bioaccessibility were measured when tomato-emulsion mixtures that had received different thermal and mixing treatments were passed through the GIT model. Carotenoid bioaccessibility decreased with increasing initial droplet size (small ≥ medium > large), which was attributed to two effects. First, smaller droplets extracted carotenoids from tomato tissue more efficiently. Second, smaller droplets were digested faster leading to more rapid mixed micelle formation, thereby increasing carotenoid solubilization in intestinal fluids. Carotenoid bioaccessibility was higher from boiled than raw tomatoes because thermal disruption of the plant tissue facilitated carotenoid release. Carotenoid bioaccessibility was higher when tomatoes were boiled with emulsions than when they were boiled alone and then added to emulsions. In conclusion, excipient emulsions are highly effective at increasing carotenoid bioaccessibility from tomatoes, but lipid droplet size must be optimized to ensure high efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 01 October 2018

    The original version of this article unfortunately contained a mistake. The spelling of David Julian McClements name was incorrect.

References

  1. F. Khachik, L. Carvalho, P.S. Bernstein, G.J. Muir, D.-Y. Zhao, N.B. Katz, Exp. Biol. Med. 227(10), 845–851 (2002)

    Article  CAS  Google Scholar 

  2. I.J. Colle, S. Van Buggenhout, L. Lemmens, A.M. Van Loey, M.E. Hendrickx, Food Res. Int. 45(1), 250–255 (2012)

    Article  CAS  Google Scholar 

  3. L.J. Machlin, Crit. Rev. Food Sci. Nutr. 35(1–2), 41–49 (1995)

  4. F. Granado-Lorencio, B. Olmedilla-Alonso, C. Herrero-Barbudo, I. Blanco-Navarro, B. Pérez-Sacristán, S. Blázquez-García, Food Chem. 102(3), 641–648 (2007)

    Article  CAS  Google Scholar 

  5. A. Degrou, S. Georgé, C. M. Renard and D. Page, Food Chem.136 (2), 435–441 (2013)

  6. M. G. Ferruzzi, J. L. Lumpkin, S. J. Schwartz and M. Failla, J. Agric. Food Chem. 54 (7), 2780–2785 (2006)

    Article  CAS  Google Scholar 

  7. H. Li, Z. Deng, R. Liu, S. Loewen and R. Tsao, Food Chem.136 (2), 878–888 (2013)

  8. S. Franceschi, E. Bidoli, C.L. Vecchia, R. Talamini, B. D'Avanzo, E. Negri, Int. J. Cancer 59(2), 181–184 (1994)

    Article  CAS  Google Scholar 

  9. P. Burney, G. Comstock and J. Morris, Am. J. Clin. Nutr. 49 (5), 895–900 (1989)

  10. K.J. Helzlsouer, G.W. Comstock, J.S. Morris, Cancer Res. 49(21), 6144–6148 (1989)

    CAS  PubMed  Google Scholar 

  11. J. Van Eenwyk, F.G. Davis, P.E. Bowen, Int. J. Cancer 48(1), 34–38 (1991)

    Article  CAS  Google Scholar 

  12. N.J. Engelmann, S.K. Clinton, J.W. Erdman, Adv. Nutr. 2(1), 51–61 (2011)

  13. K. Canene-Adams, B. L. Lindshield, S. Wang, E. H. Jeffery, S. K. Clinton and J. W. Erdman, Cancer Res. 67 (2), 836–843 (2007)

  14. R. Zhang, Z. Zhang, L. Zou, et al., Food Funct. 7(1), 93–103 (2016)

    Article  CAS  Google Scholar 

  15. E. Fernández-García, I. Carvajal-Lérida, M. Jarén-Galán, J. Garrido-Fernández, A. Pérez-Gálvez, D. Hornero-Méndez, Food Res. Int. 46(2), 438–450 (2012)

    Article  Google Scholar 

  16. P. Borel, Clin. Chem. Lab. Med. 41(8), 979–994 (2003)

    Article  CAS  Google Scholar 

  17. L. E. Conlon, R. D. King, N. E. Moran and J. W. Erdman Jr, J. Agric. Food Chem. 60 (34), 8386–8394 (2012)

    Article  CAS  Google Scholar 

  18. N. Z. Unlu, T. Bohn, S. K. Clinton and S. J. Schwartz, J. Nutr. 135 (3), 431–436 (2005)

  19. E. Hedren, V. Diaz and U. Svanberg,  Eur. J. Clin. Nutr. 56 (5), 425–430 (2002)

  20. E. Hedrén, G. Mulokozi and U. Svanberg,  Int. J. Food Sci. Nutr. 53 (6), 445–453 (2002)

  21. D.J. McClements, L. Zou, R. Zhang, L. Salvia-Trujillo, T. Kumosani, H. Xiao, Compr. Rev. Food Sci. Food Saf. 14(6), 824–847 (2015)

    Article  CAS  Google Scholar 

  22. D.J. McClements, H. Xiao, Food Funct. 5(7), 1320–1333 (2014)

    Article  CAS  Google Scholar 

  23. R. Zhang, Z. Zhang, L. Zou, et al., J. Agric. Food Chem. 63(48), 10508–10517 (2015)

    Article  CAS  Google Scholar 

  24. X. Liu, J. Bi, H. Xiao, D.J. McClements, J. Food Sci. 81(3), N754–N761 (2016)

    Article  CAS  Google Scholar 

  25. X. Liu, J. Bi, H. Xiao, D.J. McClements, J. Agric. Food Chem. 63(38), 8534–8543 (2015)

    Article  CAS  Google Scholar 

  26. Q. Li, T. Li, C. Liu, et al., Food Res. Int. 89, 320–329 (2016)

    Article  CAS  Google Scholar 

  27. C. Qian, E.A. Decker, H. Xiao, D.J. McClements, Food Chem. 135(3), 1440–1447 (2012)

    Article  CAS  Google Scholar 

  28. L. Zou, W. Liu, C. Liu, H. Xiao and D. J. McClements, J. Agric. Food Chem. 63 (7), 2052–2062 (2015)

    Article  CAS  Google Scholar 

  29. R. J. Delahaije, H. Gruppen, M. L. Giuseppin and P. A. Wierenga, Adv. Colloid  Interfac.  219, 1–9 (2015)

  30. J. N. Israelachvili, Intermolecular and surface forces: Revised third edition. (Cambridge, Academic press, 2011)

  31. D. Hornero-Méndez, M.I. Mínguez-Mosquera, Innovative Food Sci. Emerg. Technol. 8(3), 407–412 (2007)

    Article  Google Scholar 

  32. I. Colle, L. Lemmens, S. Van Buggenhout, A. Van, Loey and M. Hendrickx, J. Food Sci. 75(9), C753–C759 (2010)

  33. E.L. Sliwinski, P.J. Roubos, F.D. Zoet, M. van Boekel, J.T.M. Wouters, Colloid surface B 31(1–4), 231–242 (2003)

  34. F.J. Monahan, D.J. McClements, J.B. German, J. Food Sci. 61(3), 504–509 (1996)

    Article  CAS  Google Scholar 

  35. D.J. McClements, Adv. Colloid  Interfac. 174, 1–30 (2012)

  36. M.H. Vingerhoeds, T.B. Blijdenstein, F.D. Zoet, G.A. van Aken, Food Hydrocoll. 19(5), 915–922 (2005)

    Article  CAS  Google Scholar 

  37. M. Espinal-Ruiz, F. Parada-Alfonso, L.-P. Restrepo-Sánchez, C.-E. Narváez-Cuenca and D. J. McClements, Food Funct. 5 (12), 3083–3095 (2014)

    Article  CAS  Google Scholar 

  38. R. Zhang, Z. Zhang, H. Zhang, E.A. Decker, D.J. McClements, Food Res. Int. 75, 71–78 (2015)

  39. Y. Chang, D.J. McClements, Food Hydrocoll. 56, 425–433 (2016)

    Article  CAS  Google Scholar 

  40. H. Singh and A. Sarkar, Adv. Colloid  Interfac. 165 (1), 47–57 (2011)

  41. L. Zou, B. Zheng, W. Liu, C. Liu, H. Xiao and D. J. McClements, J. Funct. Foods 15, 72–83 (2015)

  42. R. Zhang, Z. Zhang, L. Zou, et al., Food Biophys. 11(1), 1–10 (2016)

  43. M. J. Brown, M. G. Ferruzzi, M. L. Nguyen, et al., Am. J. Clin. Nutr. 80 (2), 396–403 (2004)

  44. R. M. Schweiggert, D. Mezger, F. Schimpf, C. B. Steingass and R. Carle, Food Chem. 135 (4), 2736–2742 (2012)

  45. P.D.A. Pudney, L. Gambelli, M.J. Gidley, Appl. Spectrosc. 65(2), 127–134 (2011)

    Article  CAS  Google Scholar 

  46. A. Panozzo, L. Lemmens, A. Van Loey, L. Manzocco, M.C. Nicoli, M. Hendrickx, Food Chem. 141(4), 4094–4100 (2013)

    Article  CAS  Google Scholar 

  47. D.Y. Low, B. D'Arcy, M.J. Gidley, Food Res. Int. 67, 238–246 (2015)

    Article  CAS  Google Scholar 

  48. C. L. Rock, J. L. Lovalvo, C. Emenhiser, M. T. Ruffin, S. W. Flatt and S. J. Schwartz, J. Nutr. 128 (5), 913–916 (1998)

  49. K. H. van het Hof, B. C. de Boer, L. B. Tijburg, et al., J. Nutr. 130 (5), 1189–1196 (2000)

  50. L. Lemmens, S. Van Buggenhout, I. Oey, A. Van Loey, M. Hendrickx, Food Res. Int. 42(9), 1323–1330 (2009)

    Article  CAS  Google Scholar 

  51. O. Livny, R. Reifen, I. Levy, et al., Eur. J. Nutr. 42 (6), 338–345 (2003)

Download references

Acknowledgements

We thank the following financial support: “National Natural Science Foundation of China” (31460394). This material was partly based upon work supported by the Cooperative State Research, Extension, Education Service, USDA, Massachusetts Agricultural Experiment Station (MAS00491) and USDA, NRI Grants (2013-03795).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengmei Liu or David Julian McClemnets.

Additional information

Chengmei Liu and David Julian McClemnets contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, T., Liu, C. et al. Enhancement of Carotenoid Bioaccessibility from Tomatoes Using Excipient Emulsions: Influence of Particle Size. Food Biophysics 12, 172–185 (2017). https://doi.org/10.1007/s11483-017-9474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9474-7

Keywords

Navigation