Histamine Induces Microglia Activation and the Release of Proinflammatory Mediators in Rat Brain Via H1R or H4R

Abstract

Histamine is a major peripheral inflammatory mediator and a neurotransmitter in the central nervous system. We have reported that histamine induces microglia activation and releases proinflammatory factors in primary cultured microglia. Whether histamine has similar effects in vivo is unknown. In the present study, we aimed to investigate the role of histamine and its receptors in the release of inflammatory mediators and activation of microglia in rat brain. We site-directed injected histamine, histamine receptor agonists or histamine receptor antagonists in the rat lateral ventricle using stereotaxic techniques. Flow cytometry was employed to determine histamine receptor expression in rat microglia. Microglia activation was assessed by Iba1 immunohistochemistry. The levels of tumour necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and interleukin-10 (IL-10) were measured with commercial enzyme-linked immunosorbent assay (ELISA) kits, TNF-α, IL-1β and IL-10 mRNA expressions were determined with Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). We found that all four types of histamine receptors were expressed in rat brain microglia. Histamine was able to induce microglia activation and subsequent production of the inflammatory factors TNF-α, IL-1β and IL-10, and these effects were partially abolished by H1R and H4R antagonists. However, H2R and H3R antagonists significantly increased production of TNF-α and IL-1β, and decreased IL-10 levels. The H1R or H4R agonists stimulated the production of TNF-α and IL-1β, while the H2R or H3R agonists increased IL-10 release. Our results demonstrate that histamine induces microglia activation and the release of both proinflammatory and anti-inflammatory factors in rat brain, thus contributing to the development of inflammation in the brain.

Histamine induces microglia activation and the release of both proinflammatory (TNF-α and IL-1β) and anti-inflammatory factors (IL-10) in rat brain, thus contributing to the development of inflammation in the brain.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akundi RS, Candelario-Jalil E, Hess S, Hull M, Lieb K, Gebicke-Haerter PJ, Fiebich BL (2005) Signal transduction pathways regulating cyclooxygenase-2 in lipopolysaccharide-activated primary rat microglia. Glia 51(3):199–208

    PubMed  Article  Google Scholar 

  2. Apolloni S, Fabbrizio P, Amadio S, Napoli G, Verdile V, Morello G, Iemmolo R, Aronica E, Cavallaro S, Volonte C (2017) Histamine regulates the inflammatory profile of SOD1-G93A microglia and the Histaminergic system is dysregulated in amyotrophic lateral sclerosis. Front Immunol 8:1689

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. Barata-Antunes S, Cristovao AC, Pires J, Rocha SM, Bernardino L (2017) Dual role of histamine on microglia-induced neurodegeneration. Biochim Biophys Acta Mol basis Dis 1863(3):764–769

    CAS  PubMed  Article  Google Scholar 

  4. Barkauskas DS, Dixon Dorand R, Myers JT, Evans TA, Barkauskas KJ, Askew D, Purgert R, Huang AY (2015) Focal transient CNS vessel leak provides a tissue niche for sequential immune cell accumulation during the asymptomatic phase of EAE induction. Exp Neurol 266:74–85

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Biran V, Cochois V, Karroubi A, Arrang JM, Charriaut-Marlangue C, Heron A (2008) Stroke induces histamine accumulation and mast cell degranulation in the neonatal rat brain. Brain Pathol 18(1):1–9

    CAS  PubMed  Article  Google Scholar 

  6. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(2):77–98

    CAS  PubMed  Article  Google Scholar 

  7. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69

    CAS  PubMed  Article  Google Scholar 

  8. Borriello F, Iannone R, Marone G (2017) Histamine release from mast cells and basophils. Handb Exp Pharmacol 241:121–139

    CAS  PubMed  Article  Google Scholar 

  9. Casano AM, Peri F (2015) Microglia: multitasking specialists of the brain. Dev Cell 32(4):469–477

    CAS  PubMed  Article  Google Scholar 

  10. Chikahisa S, Kodama T, Soya A, Sagawa Y, Ishimaru Y, Sei H, Nishino S (2013) Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states. PLoS One 8(10):e78434

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O'Keeffe S, Phatnani HP, Muratet M, Carroll MC, Levy S, Tavazoie S, Myers RM, Maniatis T (2013) A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 4(2):385–401

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Ciallella JR, Saporito M, Lund S, Leist M, Hasseldam H, McGann N, Smith CS, Bozyczko-Coyne D, Flood DG (2005) CEP-11004, an inhibitor of the SAPK/JNK pathway, reduces TNF-alpha release from lipopolysaccharide-treated cells and mice. Eur J Pharmacol 515(1–3):179–187

    CAS  PubMed  Article  Google Scholar 

  13. Cianciulli A, Dragone T, Calvello R, Porro C, Trotta T, Lofrumento DD, Panaro MA (2015) IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells. Int Immunopharmacol 24(2):369–376

    CAS  PubMed  Article  Google Scholar 

  14. Dong H, Zhang W, Zeng X, Hu G, Zhang H, He S, Zhang S (2014) Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia. Mol Neurobiol 49(3):1487–1500

    CAS  PubMed  Article  Google Scholar 

  15. Dong H, Zhang X, Wang Y, Zhou X, Qian Y, Zhang S (2017) Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol 54(2):997–1007

    CAS  PubMed  Article  Google Scholar 

  16. Dong H, Wang Y, Zhang X, Zhang X, Qian Y, Ding H, Zhang S (2019) Stabilization of brain mast cells alleviates LPS-induced neuroinflammation by inhibiting microglia activation. Front Cell Neurosci 13:191

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Elieh-Ali-Komi D, Cao Y (2017) Role of mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Rev Allergy Immunol 52(3):436–445

    CAS  PubMed  Article  Google Scholar 

  18. Ferreira R, Santos T, Goncalves J, Baltazar G, Ferreira L, Agasse F, Bernardino L (2012) Histamine modulates microglia function. J Neuroinflammation 9:90

    PubMed  PubMed Central  Article  Google Scholar 

  19. Frick L, Rapanelli M, Abbasi E, Ohtsu H, Pittenger C (2016) Histamine regulation of microglia: gene-environment interaction in the regulation of central nervous system inflammation. Brain Behav Immun 57:326–337

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Gao HM, Liu B, Zhang W, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24(8):395–401

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Girard S, Tremblay L, Lepage M, Sebire G (2010) IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. J Immunol 184(7):3997–4005

    CAS  PubMed  Article  Google Scholar 

  22. Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119(1):89–105

    PubMed  Article  Google Scholar 

  23. Griffin WS, Liu L, Li Y, Mrak RE, Barger SW (2006) Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation 3:5

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Haas HL, Panula P (2016) Histamine receptors. Neuropharmacology 106:1–2

    CAS  PubMed  Article  Google Scholar 

  25. Han Q, Lin Q, Huang P, Chen M, Hu X, Fu H, He S, Shen F, Zeng H, Deng Y (2017) Microglia-derived IL-1beta contributes to axon development disorders and synaptic deficit through p38-MAPK signal pathway in septic neonatal rats. J Neuroinflammation 14(1):52

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. Hu W, Chen Z (2017) The roles of histamine and its receptor ligands in central nervous system disorders: an update. Pharmacol Ther 175:116–132

    CAS  PubMed  Article  Google Scholar 

  27. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J (2015) Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol 11(1):56–64

    PubMed  Article  Google Scholar 

  28. Iori V, Frigerio F, Vezzani A (2016) Modulation of neuronal excitability by immune mediators in epilepsy. Curr Opin Pharmacol 26:118–123

    CAS  PubMed  Article  Google Scholar 

  29. Jin Y, Silverman AJ, Vannucci SJ (2009) Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke 40(9):3107–3112

    CAS  PubMed  Article  Google Scholar 

  30. Joers V, Tansey MG, Mulas G, Carta AR (2017) Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol 155:57–75

    CAS  PubMed  Article  Google Scholar 

  31. Katoh Y, Niimi M, Yamamoto Y, Kawamura T, Morimoto-Ishizuka T, Sawada M, Takemori H, Yamatodani A (2001) Histamine production by cultured microglial cells of the mouse. Neurosci Lett 305(3):181–184

    CAS  PubMed  Article  Google Scholar 

  32. Kierdorf K, Prinz M (2017) Microglia in steady state. J Clin Invest 127(9):3201–3209

    PubMed  PubMed Central  Article  Google Scholar 

  33. Krakowiak P, Goines PE, Tancredi DJ, Ashwood P, Hansen RL, Hertz-Picciotto I, Van de Water J (2017) Neonatal cytokine profiles associated with autism spectrum disorder. Biol Psychiatry 81(5):442–451

    CAS  PubMed  Article  Google Scholar 

  34. Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L (2017) Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 8(69):114393–114413

    PubMed  PubMed Central  Article  Google Scholar 

  35. Lenz KM, Nelson LH (2018) Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Front Immunol 9:698

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Lin CC, Edelson BT (2017) New insights into the role of IL-1beta in experimental autoimmune encephalomyelitis and multiple sclerosis. J Immunol 198(12):4553–4560

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Lund S, Porzgen P, Mortensen AL, Hasseldam H, Bozyczko-Coyne D, Morath S, Hartung T, Bianchi M, Ghezzi P, Bsibsi M, Dijkstra S, Leist M (2005) Inhibition of microglial inflammation by the MLK inhibitor CEP-1347. J Neurochem 92(6):1439–1451

    CAS  PubMed  Article  Google Scholar 

  38. Ma Y, Wang J, Wang Y, Yang GY (2017) The biphasic function of microglia in ischemic stroke. Prog Neurobiol 157:247–272

    CAS  PubMed  Article  Google Scholar 

  39. Medina MA, Quesada AR, Nunez de Castro I, Sanchez-Jimenez F (1999) Histamine, polyamines, and cancer. Biochem Pharmacol 57(12):1341–1344

    CAS  PubMed  Article  Google Scholar 

  40. Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18(3):315–321

    CAS  PubMed  Article  Google Scholar 

  41. Mishra A, Kim HJ, Shin AH, Thayer SA (2012) Synapse loss induced by interleukin-1beta requires pre- and post-synaptic mechanisms. J NeuroImmune Pharmacol 7(3):571–578

    PubMed  PubMed Central  Article  Google Scholar 

  42. Morganti JM, Riparip LK, Rosi S (2016) Call off the dog(ma): M1/M2 polarization is concurrent following traumatic brain injury. PLoS One 11(1):e0148001

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D, Greter M, Becher B (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48(2):380–395

    CAS  PubMed  Article  Google Scholar 

  44. Murray KN, Parry-Jones AR, Allan SM (2015) Interleukin-1 and acute brain injury. Front Cell Neurosci 9:18

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. O’Garra A, Vieira P (2007) T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol 7(6):425–428

    PubMed  Article  CAS  Google Scholar 

  46. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173(4):649–665

    CAS  PubMed  Article  Google Scholar 

  47. Panula P, Nuutinen S (2013) The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 14(7):472–487

    CAS  PubMed  Article  Google Scholar 

  48. Parsons ME, Ganellin CR (2006) Histamine and its receptors. Br J Pharmacol 147(Suppl 1):S127–S135

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pozzi D, Menna E, Canzi A, Desiato G, Mantovani C, Matteoli M (2018) The communication between the immune and nervous systems: the role of IL-1beta in synaptopathies. Front Mol Neurosci 11:111

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. Provensi G, Coccurello R, Umehara H, Munari L, Giacovazzo G, Galeotti N, Nosi D, Gaetani S, Romano A, Moles A, Blandina P, Passani MB (2014) Satiety factor oleoylethanolamide recruits the brain histaminergic system to inhibit food intake. Proc Natl Acad Sci U S A 111(31):11527–11532

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Rocha SM, Pires J, Esteves M, Graca B, Bernardino L (2014) Histamine: a new immunomodulatory player in the neuron-glia crosstalk. Front Cell Neurosci 8:120

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Rocha SM, Saraiva T, Cristovao AC, Ferreira R, Santos T, Esteves M, Saraiva C, Je G, Cortes L, Valero J, Alves G, Klibanov A, Kim YS, Bernardino L (2016) Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J Neuroinflammation 13(1):137

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. Saligrama N, Noubade R, Case LK, del Rio R, Teuscher C (2012) Combinatorial roles for histamine H1-H2 and H3-H4 receptors in autoimmune inflammatory disease of the central nervous system. Eur J Immunol 42(6):1536–1546

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Shan L, Bossers K, Luchetti S, Balesar R, Lethbridge N, Chazot PL, Bao AM, Swaab DF (2012a) Alterations in the histaminergic system in the substantia nigra and striatum of Parkinson’s patients: a postmortem study. Neurobiol Aging 33(7):1488.e1–1488.e13

    CAS  Article  Google Scholar 

  55. Shan L, Bossers K, Unmehopa U, Bao AM, Swaab DF (2012b) Alterations in the histaminergic system in Alzheimer’s disease: a postmortem study. Neurobiol Aging 33(11):2585–2598

    CAS  PubMed  Article  Google Scholar 

  56. Shan L, Liu CQ, Balesar R, Hofman MA, Bao AM, Swaab DF (2012c) Neuronal histamine production remains unaltered in Parkinson’s disease despite the accumulation of Lewy bodies and Lewy neurites in the tuberomamillary nucleus. Neurobiol Aging 33(7):1343–1344

    CAS  PubMed  Article  Google Scholar 

  57. Shan L, Swaab DF, Bao AM (2013) Neuronal histaminergic system in aging and age-related neurodegenerative disorders. Exp Gerontol 48(7):603–607

    CAS  PubMed  Article  Google Scholar 

  58. Shan L, Bao AM, Swaab DF (2015) The human histaminergic system in neuropsychiatric disorders. Trends Neurosci 38(3):167–177

    CAS  PubMed  Article  Google Scholar 

  59. Shan Y, Gao Y, Zhang L, Ma L, Shi Y, Liu X (2019) H4 receptor inhibits lipopolysaccharide-induced NF-kappaB activation by interacting with tumor necrosis factor receptor-associated factor 6. Neuroscience 398:113–125

    CAS  PubMed  Article  Google Scholar 

  60. Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim KW, Klein E, Kalchenko V, Bendel P, Lira SA, Jung S, Schwartz M (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38(3):555–569

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Theoharides TC, Stewart JM, Hatziagelaki E, Kolaitis G (2015) Brain “fog,” inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin. Front Neurosci 9:225

    PubMed  PubMed Central  Article  Google Scholar 

  62. Tweedie D, Sambamurti K, Greig NH (2007) TNF-alpha inhibition as a treatment strategy for neurodegenerative disorders: new drug candidates and targets. Curr Alzheimer Res 4(4):378–385

    CAS  PubMed  Article  Google Scholar 

  63. Vizuete ML, Merino M, Venero JL, Santiago M, Cano J, Machado A (2000) Histamine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substantia nigra. J Neurochem 75(2):540–552

    CAS  PubMed  Article  Google Scholar 

  64. Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, Goetz M, Lucius R, Herdegen T, Hanisch UK (2005) c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50(3):235–246

    PubMed  Article  Google Scholar 

  65. Yang HM, Yang S, Huang SS, Tang BS, Guo JF (2017) Microglial activation in the pathogenesis of Huntington’s disease. Front Aging Neurosci 9:193

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. Yin JJ, Hu XQ, Mao ZF, Bao J, Qiu W, Lu ZQ, Wu HT, Zhong XN (2017) Neutralization of Interleukin-9 decreasing mast cells infiltration in experimental autoimmune encephalomyelitis. Chin Med J 130(8):964–971

    PubMed  PubMed Central  Article  Google Scholar 

  67. Zhang X, Wang Y, Dong H, Xu Y, Zhang S (2016) Induction of microglial activation by mediators released from mast cells. Cell Physiol Biochem 38(4):1520–1531

    CAS  PubMed  Article  Google Scholar 

  68. Zhou P, Homberg JR, Fang Q, Wang J, Li W, Meng X, Shen J, Luan Y, Liao P, Swaab DF, Shan L, Liu C (2019) Histamine-4 receptor antagonist JNJ7777120 inhibits pro-inflammatory microglia and prevents the progression of Parkinson-like pathology and behaviour in a rat model. Brain Behav Immun 76:61–73

    CAS  PubMed  Article  Google Scholar 

  69. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H (2017) Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140(7):1900–1913

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This project was sponsored by the National Natural Science Foundation of China (No. 81102422, 81373398, 81570522 and 81501202), Hubei natural science foundation (2018CFB301), but they had no role in the design of the study collection, analysis, or interpretation of the data; or writing of the manuscript. We would like to thank the Core Facility of Jiangsu Provincial People’s Hospital for its help in the detection of experimental samples.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiqiao Zhou or Shu Zhang.

Ethics declarations

Disclosure Statement

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Statement on the Welfare of Animals

This article does not contain any studies with human participants performed by any of the authors.

All experiments were carried out according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals (publication no. 85–23, revised 1985) and the Guidelines for the Care and Use of Animals in Neuroscience Research by the Society for Neuroscience and approved by IACUC (Institutional Animal Care and Use Committee of Nanjing Medical University, NO: 14030126).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, X., Zhang, Y. et al. Histamine Induces Microglia Activation and the Release of Proinflammatory Mediators in Rat Brain Via H1R or H4R. J Neuroimmune Pharmacol 15, 280–291 (2020). https://doi.org/10.1007/s11481-019-09887-6

Download citation

Keywords

  • Microglia
  • Histamine
  • Histamine receptors
  • Agonist
  • Antagonist
  • Inflammatory mediators