Skip to main content

Advertisement

Log in

HIV and the Macrophage: From Cell Reservoirs to Drug Delivery to Viral Eradication

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Macrophages serve as host cells, inflammatory disease drivers and drug runners for human immunodeficiency virus infection and treatments. Low-level viral persistence continues in these cells in the absence of macrophage death. However, the cellular microenvironment changes as a consequence of viral infection with aberrant production of pro-inflammatory factors and promotion of oxidative stress. These herald viral spread from macrophages to neighboring CD4+ T cells and end organ damage. Virus replicates in tissue reservoir sites that include the nervous, pulmonary, cardiovascular, gut, and renal organs. However, each of these events are held in check by antiretroviral therapy. A hidden and often overlooked resource of the macrophage rests in its high cytoplasmic nuclear ratios that allow the cell to sense its environment and rid it of the cellular waste products and microbial pathogens it encounters. These phagocytic and intracellular killing sensing mechanisms can also be used in service as macrophages serve as cellular carriage depots for antiretroviral nanoparticles and are able to deliver medicines to infectious disease sites with improved therapeutic outcomes. These undiscovered cellular functions can lead to reductions in persistent infection and may potentially facilitate the eradication of residual virus to eliminate disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aillet F, Masutani H, Elbim C, Raoul H, Chene L, Nugeyre MT, Paya C, Barre-Sinoussi F, Gougerot-Pocidalo MA, Israel N (1998) Human immunodeficiency virus induces a dual regulation of Bcl-2, resulting in persistent infection of CD4(+) T- or monocytic cell lines. J Virol 72:9698–9705

    PubMed  PubMed Central  CAS  Google Scholar 

  • Aiuti F, Mezzaroma I (2006) Failure to reconstitute CD4+ T-cells despite suppression of HIV replication under HAART. AIDS Rev 8:88–97

    PubMed  Google Scholar 

  • Alhetheel A, Yakubtsov Y, Abdkader K, Sant N, Diaz-Mitoma F, Kumar A, Kryworuchko M (2008) Amplification of the signal transducer and activator of transcription I signaling pathway and its association with apoptosis in monocytes from HIV-infected patients. AIDS 22:1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958

    Article  PubMed  CAS  Google Scholar 

  • Allouch A, David A, Amie SM, Lahouassa H, Chartier L, Margottin-Goguet F, Barre-Sinoussi F, Kim B, Saez-Cirion A, Pancino G (2014) Reply to Pauls et al.: p21 is a master regulator of HIV replication in macrophages through dNTP synthesis block. Proc Natl Acad Sci U S A 111:E1325–E1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amorim NA, da Silva EM, de Castro RO, da Silva-Januario ME, Mendonca LM, Bonifacino JS, da Costa LJ, daSilva LL (2014) Interaction of HIV-1 Nef protein with the host protein Alix promotes lysosomal targeting of CD4 receptor. J Biol Chem 289:27744–27756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ancuta P, Kunstman KJ, Autissier P, Zaman T, Stone D, Wolinsky SM, Gabuzda D (2006) CD16+ monocytes exposed to HIV promote highly efficient viral replication upon differentiation into macrophages and interaction with T cells. Virology 344:267–276

    Article  PubMed  CAS  Google Scholar 

  • Aquaro S, Muscoli C, Ranazzi A, Pollicita M, Granato T, Masuelli L, Modesti A, Perno CF, Mollace V (2007) The contribution of peroxynitrite generation in HIV replication in human primary macrophages. Retrovirology 4:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arainga M, Su H, Poluektova LY, Gorantla S, Gendelman HE (2016) HIV-1 cellular and tissue replication patterns in infected humanized mice. Sci Rep 6:23513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azzam R, Kedzierska K, Leeansyah E, Chan H, Doischer D, Gorry PR, Cunningham AL, Crowe SM, Jaworowski A (2006) Impaired complement-mediated phagocytosis by HIV type-1-infected human monocyte-derived macrophages involves a cAMP-dependent mechanism. AIDS Res Hum Retrovir 22:619–629

    Article  PubMed  CAS  Google Scholar 

  • Balagopal A, Ray SC, De Oca RM, Sutcliffe CG, Vivekanandan P, Higgins Y, Mehta SH, Moore RD, Sulkowski MS, Thomas DL, Torbenson MS (2009) Kupffer cells are depleted with HIV immunodeficiency and partially recovered with antiretroviral immune reconstitution. AIDS 23:2397–2404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baron MH, Isern J, Fraser ST (2012) The embryonic origins of erythropoiesis in mammals. Blood 119:4828–4837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beers SA, Chan CH, James S, French RR, Attfield KE, Brennan CM, Ahuja A, Shlomchik MJ, Cragg MS, Glennie MJ (2008) Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood 112:4170–4177

    Article  PubMed  CAS  Google Scholar 

  • Benveniste O, Flahault A, Rollot F, Elbim C, Estaquier J, Pedron B, Duval X, Dereuddre-Bosquet N, Clayette P, Sterkers G, Simon A, Ameisen JC, Leport C (2005) Mechanisms involved in the low-level regeneration of CD4+ cells in HIV-1-infected patients receiving highly active antiretroviral therapy who have prolonged undetectable plasma viral loads. J Infect Dis 191:1670–1679

    Article  PubMed  Google Scholar 

  • Bhaskaran N, Ghosh SK, Yu X, Qin S, Weinberg A, Pandiyan P, Ye F (2017) Kaposi's sarcoma-associated herpesvirus infection promotes differentiation and polarization of monocytes into tumor-associated macrophages. Cell Cycle 16:1611–1621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bocchino M, Ledru E, Debord T, Gougeon ML (2001) Increased priming for interleukin-12 and tumour necrosis factor alpha in CD64 monocytes in HIV infection: modulation by cytokines and therapy. AIDS 15:1213–1223

    Article  PubMed  CAS  Google Scholar 

  • Bouwman FH, Skolasky RL, Hes D, Selnes OA, Glass JD, Nance-Sproson TE, Royal W, Dal Pan GJ, McArthur JC (1998) Variable progression of HIV-associated dementia. Neurology 50:1814–1820

    Article  PubMed  CAS  Google Scholar 

  • Boyette LB, Macedo C, Hadi K, Elinoff BD, Walters JT, Ramaswami B, Chalasani G, Taboas JM, Lakkis FG, Metes DM (2017) Phenotype, function, and differentiation potential of human monocyte subsets. PLoS One 12:e0176460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW (2011) Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood-brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 267:109–123

    Article  PubMed  CAS  Google Scholar 

  • Cavert W, Notermans DW, Staskus K, Wietgrefe SW, Zupancic M, Gebhard K, Henry K, Zhang ZQ, Mills R, McDade H, Schuwirth CM, Goudsmit J, Danner SA, Haase AT (1997) Kinetics of response in lymphoid tissues to antiretroviral therapy of HIV-1 infection. Science 276:960–964

    Article  PubMed  CAS  Google Scholar 

  • Cenac A, Gaudeau S, Vernant P (1975) Pericardial effusions and mediastinal radiotherapy. 4 cases. Nouv Press Med 4:185–187

    CAS  Google Scholar 

  • Cervasi B, Paiardini M, Serafini S, Fraternale A, Menotta M, Engram J, Lawson B, Staprans SI, Piedimonte G, Perno CF, Silvestri G, Magnani M (2006) Administration of fludarabine-loaded autologous red blood cells in simian immunodeficiency virus-infected sooty mangabeys depletes pSTAT-1-expressing macrophages and delays the rebound of viremia after suspension of antiretroviral therapy. J Virol 80:10335–10345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao JR, Wang JM, Lee SF, Peng HW, Lin YH, Chou CH, Li JC, Huang HM, Chou CK, Kuo ML, Yen JJ, Yang-Yen HF (1998) mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol Cell Biol 18:4883–4898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhry A, Das SR, Jameel S, George A, Bal V, Mayor S, Rath S (2008) HIV-1 Nef induces a Rab11-dependent routing of endocytosed immune costimulatory proteins CD80 and CD86 to the Golgi. Traffic 9:1925–1935

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry A, Verghese DA, Das SR, Jameel S, George A, Bal V, Mayor S, Rath S (2009) HIV-1 Nef promotes endocytosis of cell surface MHC class II molecules via a constitutive pathway. J Immunol 183:2415–2424

    Article  PubMed  CAS  Google Scholar 

  • Cheng-Mayer C, Liu R, Landau NR, Stamatatos L (1997) Macrophage tropism of human immunodeficiency virus type 1 and utilization of the CC-CKR5 coreceptor. J Virol 71:1657–1661

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW Jr, Sowder RC 2nd, Barsov E, Hood BL, Fisher RJ, Nagashima K, Conrads TP, Veenstra TD, Lifson JD, Ott DE (2006) Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 80:9039–9052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cobb A, Roberts LK, Palucka AK, Mead H, Montes M, Ranganathan R, Burkeholder S, Finholt JP, Blankenship D, King B, Sloan L, Harrod AC, Levy Y, Banchereau J (2011) Development of a HIV-1 lipopeptide antigen pulsed therapeutic dendritic cell vaccine. J Immunol Methods 365:27–37

  • Cross SA, Cook DR, Chi AW, Vance PJ, Kolson LL, Wong BJ, Jordan-Sciutto KL, Kolson DL (2011) Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection. J Immunol 187:5015–5025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalakas MC, Cupler EJ (1996) Neuropathies in HIV infection. Baillieres Clin Neurol 5:199–218

    PubMed  CAS  Google Scholar 

  • Dash PK, Gendelman HE, Roy U, Balkundi S, Alnouti Y, Mosley RL, Gelbard HA, McMillan J, Gorantla S, Poluektova LY (2012) Long-acting nanoformulated antiretroviral therapy elicits potent antiretroviral and neuroprotective responses in HIV-1-infected humanized mice. AIDS 26:2135–2144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Luca A, Ciancio BC, Larussa D, Murri R, Cingolani A, Rizzo MG, Giancola ML, Ammassari A, Ortona L (2002) Correlates of independent HIV-1 replication in the CNS and of its control by antiretrovirals. Neurology 59:342–347

    Article  PubMed  Google Scholar 

  • Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, O'Brien SJ (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development study, multicenter AIDS cohort study, multicenter hemophilia cohort study, san Francisco City cohort, ALIVE study. Science 273:1856–1862

    Article  PubMed  CAS  Google Scholar 

  • DeFalco T, Bhattacharya I, Williams AV, Sams DM, Capel B (2014) Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc Natl Acad Sci U S A 111:E2384–E2393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES (2005) Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307:1630–1634

    Article  PubMed  CAS  Google Scholar 

  • Desch AN, Gibbings SL, Clambey ET, Janssen WJ, Slansky JE, Kedl RM, Henson PM, Jakubzick C (2014) Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction. Nat Commun 5:4674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desmedt M, Rottiers P, Dooms H, Fiers W, Grooten J (1998) Macrophages induce cellular immunity by activating Th1 cell responses and suppressing Th2 cell responses. J Immunol 160:5300–5308

    PubMed  CAS  Google Scholar 

  • Desport M (2010) Lentiviruses and macrophages: molecular and cellular interactions. Caister Academic Press, Norkfolk

    Google Scholar 

  • Dirk BS, Pawlak EN, Johnson AL, Van Nynatten LR, Jacob RA, Heit B, Dikeakos JD (2016) HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling. Sci Rep 6:37021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dou H, Destache CJ, Morehead JR, Mosley RL, Boska MD, Kingsley J, Gorantla S, Poluektova L, Nelson JA, Chaubal M, Werling J, Kipp J, Rabinow BE, Gendelman HE (2006) Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 108:2827–2835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, Kipp J, Rabinow B, Gendelman HE (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183:661–669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dumas A, Le-Bury G, Marie-Anais F, Herit F, Mazzolini J, Guilbert T, Bourdoncle P, Russell DG, Benichou S, Zahraoui A, Niedergang F (2015) The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol 211:359–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edagwa B, McMillan J, Sillman B, Gendelman HE (2017) Long-acting slow effective release antiretroviral therapy. Expert Opin Drug Deliv 14:1281–1291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Far M, Isabelle C, Chomont N, Bourbonniere M, Fonseca S, Ancuta P, Peretz Y, Chouikh Y, Halwani R, Schwartz O, Madrenas J, Freeman GJ, Routy JP, Haddad EK, Sekaly RP (2013) Down-regulation of CTLA-4 by HIV-1 Nef protein. PLoS One 8:e54295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Espert L, Varbanov M, Robert-Hebmann V, Sagnier S, Robbins I, Sanchez F, Lafont V, Biard-Piechaczyk M (2009) Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection. PLoS One 4:e5787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Espinosa V, Rivera A (2012) Cytokines and the regulation of fungus-specific CD4 T cell differentiation. Cytokine 58:100–106

    Article  PubMed  CAS  Google Scholar 

  • Flannagan RS, Cosio G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7:355–366

    Article  PubMed  CAS  Google Scholar 

  • Foley JF, Yu CR, Solow R, Yacobucci M, Peden KW, Farber JM (2005) Roles for CXC chemokine ligands 10 and 11 in recruiting CD4+ T cells to HIV-1-infected monocyte-derived macrophages, dendritic cells, and lymph nodes. J Immunol 174:4892–4900

    Article  PubMed  CAS  Google Scholar 

  • Freeling JP, Koehn J, Shu C, Sun J, Ho RJ (2015) Anti-HIV drug-combination nanoparticles enhance plasma drug exposure duration as well as triple-drug combination levels in cells within lymph nodes and blood in primates. AIDS Res Hum Retrovir 31:107–114

    Article  PubMed  CAS  Google Scholar 

  • van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J Exp Med 128:415–435

    Article  PubMed  PubMed Central  Google Scholar 

  • van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46:845–852

    PubMed  PubMed Central  Google Scholar 

  • Gallo RC (1998) Some aspects of the pathogenesis of HIV-1-associated Kaposi's sarcoma. J Natl Cancer Inst Monogr 1998:55–57

    Article  Google Scholar 

  • Gelbard HA, Epstein LG (1995) HIV-1 encephalopathy in children. Curr Opin Pediatr 7:655–662

    PubMed  CAS  Google Scholar 

  • Gendelman HE, Baca LM, Turpin J, Kalter DC, Hansen B, Orenstein JM, Dieffenbach CW, Friedman RM, Meltzer MS (1990) Regulation of HIV replication in infected monocytes by IFN-alpha. Mechanisms for viral restriction. J Immunol 145:2669–2676

    PubMed  CAS  Google Scholar 

  • Gerber PP, Cabrini M, Jancic C, Paoletti L, Banchio C, von Bilderling C, Sigaut L, Pietrasanta LI, Duette G, Freed EO, Basile Gde S, Moita CF, Moita LF, Amigorena S, Benaroch P, Geffner J, Ostrowski M (2015) Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J Cell Biol 209:435–452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill AJ, Kovacsics CE, Vance PJ, Collman RG, Kolson DL (2015) Induction of Heme Oxygenase-1 deficiency and associated glutamate-mediated neurotoxicity is a highly conserved HIV phenotype of chronic macrophage infection that is resistant to antiretroviral therapy. J Virol 89:10656–10667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giralt M, Domingo P, Villarroya F (2009) HIV-1 infection and the PPARgamma-dependent control of adipose tissue physiology. PPAR Res 2009:607902

    Article  PubMed  CAS  Google Scholar 

  • Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38:755–762

    Article  PubMed  CAS  Google Scholar 

  • Gnanadhas DP, Dash PK, Sillman B, Bade AN, Lin Z, Palandri DL, Gautam N, Alnouti Y, Gelbard HA, McMillan J, Mosley RL, Edagwa B, Gendelman HE, Gorantla S (2017) Autophagy facilitates macrophage depots of sustained-release nanoformulated antiretroviral drugs. J Clin Invest 127:857–873

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorantla S, Dou H, Boska M, Destache CJ, Nelson J, Poluektova L, Rabinow BE, Gendelman HE, Mosley RL (2006) Quantitative magnetic resonance and SPECT imaging for macrophage tissue migration and nanoformulated drug delivery. J Leukoc Biol 80:1165–1174

    Article  PubMed  CAS  Google Scholar 

  • Gordan S, Biburger M, Nimmerjahn F (2015) bIgG time for large eaters: monocytes and macrophages as effector and target cells of antibody-mediated immune activation and repression. Immunol Rev 268:52–65

    Article  PubMed  CAS  Google Scholar 

  • Gordon S (2016) Elie Metchnikoff, the man and the myth. J Innate Immun 8:223–227

    Article  PubMed  CAS  Google Scholar 

  • Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, Bell JE, Bannert N, Crawford K, Wang H, Schols D, De Clercq E, Kunstman K, Wolinsky SM, Gabuzda D (2001) Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75:10073–10089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gousset K, Ablan SD, Coren LV, Ono A, Soheilian F, Nagashima K, Ott DE, Freed EO (2008) Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathog 4:e1000015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guillemard E, Jacquemot C, Aillet F, Schmitt N, Barre-Sinoussi F, Israel N (2004) Human immunodeficiency virus 1 favors the persistence of infection by activating macrophages through TNF. Virology 329:371–380

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Zhang G, Wysocki TA, Wysocki BJ, Gelbard HA, Liu XM, McMillan JM, Gendelman HE (2014a) Endosomal trafficking of nanoformulated antiretroviral therapy facilitates drug particle carriage and HIV clearance. J Virol 88:9504–9513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo D, Li T, McMillan J, Sajja BR, Puligujja P, Boska MD, Gendelman HE, Liu XM (2014b) Small magnetite antiretroviral therapeutic nanoparticle probes for MRI of drug biodistribution. Nanomedicine (Lond) 9:1341–1352

    Article  CAS  Google Scholar 

  • Guo D, Zhou T, Arainga M, Palandri D, Gautam N, Bronich T, Alnouti Y, McMillan J, Edagwa B, Gendelman HE (2017) Creation of a long-acting Nanoformulated 2′,3′-Dideoxy-3'-Thiacytidine. J Acquir Immune Defic Syndr 74:e75-e83

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Collins KB, Ratner D, Watkins S, Naus GJ, Landers DV, Patterson BK (2002) Memory CD4(+) T cells are the earliest detectable human immunodeficiency virus type 1 (HIV-1)-infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system. J Virol 76:9868–9876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hercus TR, Broughton SE, Ekert PG, Ramshaw HS, Perugini M, Grimbaldeston M, Woodcock JM, Thomas D, Pitson S, Hughes T, D'Andrea RJ, Parker MW, Lopez AF (2012) The GM-CSF receptor family: mechanism of activation and implications for disease. Growth Factors 30:63–75

    Article  PubMed  CAS  Google Scholar 

  • Hopkinson-Woolley J, Hughes D, Gordon S, Martin P (1994) Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J Cell Sci 107(Pt 5):1159–1167

    PubMed  Google Scholar 

  • Hubert P, Heitzmann A, Viel S, Nicolas A, Sastre-Garau X, Oppezzo P, Pritsch O, Osinaga E, Amigorena S (2011) Antibody-dependent cell cytotoxicity synapses form in mice during tumor-specific antibody immunotherapy. Cancer Res 71:5134–5143

    Article  PubMed  CAS  Google Scholar 

  • Iordanskiy S, Santos S, Bukrinsky M (2013) Nature, nurture and HIV: the effect of producer cell on viral physiology. Virology 443:208–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jakubzick CV, Randolph GJ, Henson PM (2017) Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol 17:349–362

    Article  PubMed  CAS  Google Scholar 

  • Jambo KC, Banda DH, Afran L, Kankwatira AM, Malamba RD, Allain TJ, Gordon SB, Heyderman RS, Russell DG, Mwandumba HC (2014) Asymptomatic HIV-infected individuals on antiretroviral therapy exhibit impaired lung CD4(+) T-cell responses to mycobacteria. Am J Respir Crit Care Med 190:938–947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung A, Maier R, Vartanian JP, Bocharov G, Jung V, Fischer U, Meese E, Wain-Hobson S, Meyerhans A (2002) Recombination: multiply infected spleen cells in HIV patients. Nature 418:144

    Article  PubMed  CAS  Google Scholar 

  • Kadiu I, Gendelman HE (2011a) Macrophage bridging conduit trafficking of HIV-1 through the endoplasmic reticulum and Golgi network. J Proteome Res 10:3225–3238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kadiu I, Gendelman HE (2011b) Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection. J NeuroImmune Pharmacol 6:658–675

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadiu I, Nowacek A, McMillan J, Gendelman HE (2011) Macrophage endocytic trafficking of antiretroviral nanoparticles. Nanomedicine (Lond) 6:975–994

    Article  CAS  Google Scholar 

  • Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W, Khalili K (2016) Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep 6(1). https://doi.org/10.1038/srep22555

  • Kanmogne GD, Singh S, Roy U, Liu X, McMillan J, Gorantla S, Balkundi S, Smith N, Alnouti Y, Gautam N, Zhou Y, Poluektova L, Kabanov A, Bronich T, Gendelman HE (2012) Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell-targeted nanoformulated antiretroviral drugs to human brain endothelial cells. Int J Nanomedicine 7:2373–2388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawamura T, Koyanagi Y, Nakamura Y, Ogawa Y, Yamashita A, Iwamoto T, Ito M, Blauvelt A, Shimada S (2008) Significant virus replication in Langerhans cells following application of HIV to abraded skin: relevance to occupational transmission of HIV. J Immunol 180:3297–3304

    Article  PubMed  CAS  Google Scholar 

  • Keblesh JP, Reiner BC, Liu J, Xiong H (2008) Pathogenesis of human immunodeficiency virus Type-1 (HIV-1)-associated dementia: role of voltage-gated potassium channels. Retrovirology (Auckl) 2:1–10

    CAS  Google Scholar 

  • Kedzierska K, Azzam R, Ellery P, Mak J, Jaworowski A, Crowe SM (2003) Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy. J Clin Virol 26:247–263

    Article  PubMed  CAS  Google Scholar 

  • Kelly J, Beddall MH, Yu D, Iyer SR, Marsh JW, Wu Y (2008) Human macrophages support persistent transcription from unintegrated HIV-1 DNA. Virology 372:300–312

    Article  PubMed  CAS  Google Scholar 

  • Kevadiya BD, Bade AN, Woldstad C, Edagwa BJ, McMillan JM, Sajja BR, Boska MD, Gendelman HE (2017) Development of europium doped core-shell silica cobalt ferrite functionalized nanoparticles for magnetic resonance imaging. Acta Biomater 49:507–520

    Article  PubMed  CAS  Google Scholar 

  • Kindt TJ, Goldsby RA, Osborne BA, Kuby J (2007) Kuby immunology, 6th edn. W.H. Freeman, New York

    Google Scholar 

  • Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654

    Article  PubMed  CAS  Google Scholar 

  • Kotler DP (2005) HIV infection and the gastrointestinal tract. AIDS 19:107–117

    Article  PubMed  Google Scholar 

  • Kottilil S, Chun TW, Moir S, Liu S, McLaughlin M, Hallahan CW, Maldarelli F, Corey L, Fauci AS (2003) Innate immunity in human immunodeficiency virus infection: effect of viremia on natural killer cell function. J Infect Dis 187:1038–1045

    Article  PubMed  Google Scholar 

  • Koziel H, Kim S, Reardon C, Li X, Garland R, Pinkston P, Kornfeld H (1999) Enhanced in vivo human immunodeficiency virus-1 replication in the lungs of human immunodeficiency virus-infected persons with Pneumocystis carinii pneumonia. Am J Respir Crit Care Med 160:2048–2055

    Article  PubMed  CAS  Google Scholar 

  • Kutza J, Fields K, Grimm TA, Clouse KA (2002) Inhibition of HIV replication and macrophage colony-stimulating factor production in human macrophages by antiretroviral agents. AIDS Res Hum Retrovir 18:619–625

    Article  PubMed  CAS  Google Scholar 

  • Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, Federico M, Panganiban A, Vergne I, Deretic V (2009) Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 186:255–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langford TD, Letendre SL, Marcotte TD, Ellis RJ, McCutchan JA, Grant I, Mallory ME, Hansen LA, Archibald S, Jernigan T, Masliah E, Group H (2002) Severe, demyelinating leukoencephalopathy in AIDS patients on antiretroviral therapy. AIDS 16:1019–1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Larson SR, Atif SM, Gibbings SL, Thomas SM, Prabagar MG, Danhorn T, Leach SM, Henson PM, Jakubzick CV (2016) Ly6C(+) monocyte efferocytosis and cross-presentation of cell-associated antigens. Cell Death Differ 23:997–1003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le T (2017) First aid for the USMLE step 1 2017. McGraw-Hill Medical, New York

    Google Scholar 

  • Le Douce V, Herbein G, Rohr O, Schwartz C (2010) Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology 7:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW (1999) Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A 96:5215–5220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leeansyah E, Wines BD, Crowe SM, Jaworowski A (2007) The mechanism underlying defective Fcgamma receptor-mediated phagocytosis by HIV-1-infected human monocyte-derived macrophages. J Immunol 178:1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Li S, Juarez J, Alali M, Dwyer D, Collman R, Cunningham A, Naif HM (1999) Persistent CCR5 utilization and enhanced macrophage tropism by primary blood human immunodeficiency virus type 1 isolates from advanced stages of disease and comparison to tissue-derived isolates. J Virol 73:9741–9755

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Esain V, Teng L, Xu J, Kwan W, Frost IM, Yzaguirre AD, Cai X, Cortes M, Maijenburg MW, Tober J, Dzierzak E, Orkin SH, Tan K, North TE, Speck NA (2014) Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev 28:2597–2612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Tong HI, Gorantla S, Poluektova LY, Gendelman HE, Lu Y (2016) Neuropharmacologic approaches to restore the Brain's microenvironment. J NeuroImmune Pharmacol 11:484–494

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang CJ, Esteban CR, Young J, Izpisua Belmonte JC (2015) Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 6:6413. https://doi.org/10.1038/ncomms7413

  • Lima VD, Harrigan R, Murray M, Moore DM, Wood E, Hogg RS, Montaner JS (2008) Differential impact of adherence on long-term treatment response among naive HIV-infected individuals. AIDS 22:2371–2380

    Article  PubMed  Google Scholar 

  • Locati M, Zhou D, Luini W, Evangelista V, Mantovani A, Sozzani S (1994) Rapid induction of arachidonic acid release by monocyte chemotactic protein-1 and related chemokines. Role of Ca2+ influx, synergism with platelet-activating factor and significance for chemotaxis. J Biol Chem 269:4746–4753

    PubMed  CAS  Google Scholar 

  • Lorenzo-Redondo R, Fryer HR, Bedford T, Kim EY, Archer J, Pond SLK, Chung YS, Penugonda S, Chipman J, Fletcher CV, Schacker TW, Malim MH, Rambaut A, Haase AT, McLean AR, Wolinsky SM (2016) Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530:51–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magnani M, Rossi L, Brandi G, Schiavano GF, Montroni M, Piedimonte G (1992) Targeting antiretroviral nucleoside analogues in phosphorylated form to macrophages: in vitro and in vivo studies. Proc Natl Acad Sci U S A 89:6477–6481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magnani M, Casabianca A, Fraternale A, Brandi G, Gessani S, Williams R, Giovine M, Damonte G, De Flora A, Benatti U (1996) Synthesis and targeted delivery of an azidothymidine homodinucleotide conferring protection to macrophages against retroviral infection. Proc Natl Acad Sci U S A 93:4403–4408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magnani M, Balestra E, Fraternale A, Aquaro S, Paiardini M, Cervasi B, Casabianca A, Garaci E, Perno CF (2003) Drug-loaded red blood cell-mediated clearance of HIV-1 macrophage reservoir by selective inhibition of STAT1 expression. J Leukoc Biol 74:764–771

    Article  PubMed  CAS  Google Scholar 

  • Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, Van Lint C, Aunis D, Rohr O (2007) Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26:412–423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marlink R, Kanki P, Thior I, Travers K, Eisen G, Siby T, Traore I, Hsieh CC, Dia MC, Gueye EH, et al. (1994) Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 265:1587–1590

  • Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marziali M, De Santis W, Carello R, Leti W, Esposito A, Isgro A, Fimiani C, Sirianni MC, Mezzaroma I, Aiuti F (2006) T-cell homeostasis alteration in HIV-1 infected subjects with low CD4 T-cell count despite undetectable virus load during HAART. AIDS 20:2033–2041

    Article  PubMed  CAS  Google Scholar 

  • Marzocchetti A, Cingolani A, Giambenedetto SD, Ammassari A, Giancola ML, Cauda R, Antinori A, Luca AD (2005) Macrophage chemoattractant protein-1 levels in cerebrospinal fluid correlate with containment of JC virus and prognosis of acquired immunodeficiency syndrome--associated progressive multifocal leukoencephalopathy. J Neuro-Oncol 11:219–224

    CAS  Google Scholar 

  • Mazzolini J, Herit F, Bouchet J, Benmerah A, Benichou S, Niedergang F (2010) Inhibition of phagocytosis in HIV-1-infected macrophages relies on Nef-dependent alteration of focal delivery of recycling compartments. Blood 115:4226–4236

    Article  PubMed  CAS  Google Scholar 

  • McArthur JC, Brew BJ, Nath A (2005) Neurological complications of HIV infection. Lancet Neurol 4:543–555

    Article  PubMed  Google Scholar 

  • McGrath KE, Frame JM, Palis J (2015) Early hematopoiesis and macrophage development. Semin Immunol 27:379–387

    Article  PubMed  CAS  Google Scholar 

  • Meltzer MS, Skillman DR, Gomatos PJ, Kalter DC, Gendelman HE (1990) Role of mononuclear phagocytes in the pathogenesis of human immunodeficiency virus infection. Annu Rev Immunol 8:169–194

    Article  PubMed  CAS  Google Scholar 

  • Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604

    Article  PubMed  CAS  Google Scholar 

  • Michels K, Nemeth E, Ganz T, Mehrad B (2015) Hepcidin and host defense against infectious diseases. PLoS Pathog 11:e1004998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86

    Article  PubMed  CAS  Google Scholar 

  • Moorjani H, Craddock BP, Morrison SA, Steigbigel RT (1996) Impairment of phagosome-lysosome fusion in HIV-1-infected macrophages. J Acquir Immune Defic Syndr Hum Retrovirol 13:18–22

    Article  PubMed  CAS  Google Scholar 

  • Moser M (2001) Regulation of Th1/Th2 development by antigen-presenting cells in vivo. Immunobiology 204:551–557

    Article  PubMed  CAS  Google Scholar 

  • Mosoian A, Zhang L, Hong F, Cunyat F, Rahman A, Bhalla R, Panchal A, Saiman Y, Fiel MI, Florman S, Roayaie S, Schwartz M, Branch A, Stevenson M, Bansal MB (2017) Frontline science: HIV infection of Kupffer cells results in an amplified proinflammatory response to LPS. J Leukoc Biol 101:1083–1090

    Article  PubMed  CAS  Google Scholar 

  • Murray HW, Cohn ZA (1980) Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as an expression of macrophage activation. J Exp Med 152:1596–1609

    Article  PubMed  CAS  Google Scholar 

  • Murray JM, Emery S, Kelleher AD, Law M, Chen J, Hazuda DJ, Nguyen BY, Teppler H, Cooper DA (2007) Antiretroviral therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV, significantly reducing the second phase. AIDS 21:2315–2321

    Article  PubMed  CAS  Google Scholar 

  • Nicol MQ, Mathys JM, Pereira A, Ollington K, Ieong MH, Skolnik PR (2008) Human immunodeficiency virus infection alters tumor necrosis factor alpha production via toll-like receptor-dependent pathways in alveolar macrophages and U1 cells. J Virol 82:7790–7798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nowacek AS, Balkundi S, McMillan J, Roy U, Martinez-Skinner A, Mosley RL, Kanmogne G, Kabanov AV, Bronich T, Gendelman HE (2011) Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J Control Release 150:204–211

    Article  PubMed  CAS  Google Scholar 

  • Obrist R, Reilly R, Leavitt T, Knapp RC, Bast RC Jr (1983) Monocyte chemotaxis mediated by formyl-methionyl-leucyl-phenylalanine conjugated with monoclonal antibodies against human ovarian carcinoma. Int J Immunopharmacol 5:307–314

    Article  PubMed  CAS  Google Scholar 

  • Pardo CA, McArthur JC, Griffin JW (2001) HIV neuropathy: insights in the pathology of HIV peripheral nerve disease. J Peripher Nerv Syst 6:21–27

    Article  PubMed  CAS  Google Scholar 

  • Pelchen-Matthews A, Kramer B, Marsh M (2003) Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol 162:443–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, Markowitz M, Ho DD (1997) Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387:188–191

    Article  PubMed  CAS  Google Scholar 

  • Persidsky Y, Gendelman HE (2002) Murine models for human immunodeficiency virus type 1-associated dementia: the development of new treatment testing paradigms. J Neuro-Oncol 8(Suppl 2):49–52

    CAS  Google Scholar 

  • Pino M, Erkizia I, Benet S, Erikson E, Fernandez-Figueras MT, Guerrero D, Dalmau J, Ouchi D, Rausell A, Ciuffi A, Keppler OT, Telenti A, Krausslich HG, Martinez-Picado J, Izquierdo-Useros N (2015) HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology 12:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pistoia V (1991) Granulocyte-macrophage colony stimulating factor (GM-CSF); sources, targets and mechanism of action. Leukemia 5(Suppl 1):114–118

    PubMed  Google Scholar 

  • Polin RA, Abman SH, Rowitch D, Benitz WE (2016) Fetal and neonatal physiology (5th edn, vol 2). Elsevier, Philadelphia, pp 1208–1216

  • Poluektova L, Moran T, Zelivyanskaya M, Swindells S, Gendelman HE, Persidsky Y (2001) The regulation of alpha chemokines during HIV-1 infection and leukocyte activation: relevance for HIV-1-associated dementia. J Neuroimmunol 120:112–128

    Article  PubMed  CAS  Google Scholar 

  • Polyak S, Chen H, Hirsch D, George I, Hershberg R, Sperber K (1997) Impaired class II expression and antigen uptake in monocytic cells after HIV-1 infection. J Immunol 159:2177–2188

    PubMed  CAS  Google Scholar 

  • Potula R, Ramirez SH, Knipe B, Leibhart J, Schall K, Heilman D, Morsey B, Mercer A, Papugani A, Dou H, Persidsky Y (2008) Peroxisome proliferator-activated receptor-gamma activation suppresses HIV-1 replication in an animal model of encephalitis. AIDS 22:1539–1549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pozzi LA, Maciaszek JW, Rock KL (2005) Both dendritic cells and macrophages can stimulate naive CD8 T cells in vivo to proliferate, develop effector function, and differentiate into memory cells. J Immunol 175:2071–2081

    Article  PubMed  CAS  Google Scholar 

  • Puligujja P, McMillan J, Kendrick L, Li T, Balkundi S, Smith N, Veerubhotla RS, Edagwa BJ, Kabanov AV, Bronich T, Gendelman HE, Liu XM (2013) Macrophage folate receptor-targeted antiretroviral therapy facilitates drug entry, retention, antiretroviral activities and biodistribution for reduction of human immunodeficiency virus infections. Nanomedicine 9:1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Ramesh G, MacLean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat Inflamm 2013:480739

    Google Scholar 

  • Rhodes KE, Gekas C, Wang Y, Lux CT, Francis CS, Chan DN, Conway S, Orkin SH, Yoder MC, Mikkola HK (2008) The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2:252–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapouméroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725

    Article  PubMed  CAS  Google Scholar 

  • Santana-de Anda K, Gomez-Martin D, Soto-Solis R, Alcocer-Varela J (2013) Plasmacytoid dendritic cells: key players in viral infections and autoimmune diseases. Semin Arthritis Rheum 43:131–136

    Article  PubMed  CAS  Google Scholar 

  • Satpathy AT, Wu X, Albring JC, Murphy KM (2012) Re(de)fining the dendritic cell lineage. Nat Immunol 13:1145–1154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90

    Article  PubMed  CAS  Google Scholar 

  • Scriven JE, Rhein J, Hullsiek KH, von Hohenberg M, Linder G, Rolfes MA, Williams DA, Taseera K, Meya DB, Meintjes G, Boulware DR, Team C (2015) Early ART after Cryptococcal meningitis is associated with cerebrospinal fluid Pleocytosis and macrophage activation in a multisite randomized trial. J Infect Dis 212:769–778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S (2012) Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med 209:653–660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiramizu B, Gartner S, Cho M, Liu Y, Pyron N, Valcour V, Shikuma C (2004) Assessment of HIV-1 DNA copies per cell by real-time polymerase chain reaction. Front Biosci 9:255–261

    Article  PubMed  CAS  Google Scholar 

  • Sillman B, Bade AN, Dash PK, Bhargavan B, Kocher T, Mathews S, Su H, Kanmogne GD, Poluektova LY, Gorantla S, McMillan J, Gautam N, Alnouti Y, Edagwa B, Gendelman HE (2018) Creation of a long-acting nanoformulated dolutegravir. Nat Commun 9:443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh MV, Davidson DC, Jackson JW, Singh VB, Silva J, Ramirez SH, Maggirwar SB (2014) Characterization of platelet-monocyte complexes in HIV-1-infected individuals: possible role in HIV-associated neuroinflammation. J Immunol 192:4674–4684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh D, McMillan J, Hilaire J, Gautam N, Palandri D, Alnouti Y, Gendelman HE, Edagwa B (2016) Development and characterization of a long-acting nanoformulated abacavir prodrug. Nanomedicine (Lond) 11:1913–1927

    Article  CAS  Google Scholar 

  • Slauch JM (2011) How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol 80:580–583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, Bessis A, Ginhoux F, Garel S (2014) Microglia modulate wiring of the embryonic forebrain. Cell Rep 8:1271–1279

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Cohn ZA (2007) Pillars article: identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 1973. 137: 1142-1162. J Immunol 178:5–25

    PubMed  CAS  Google Scholar 

  • Steinman RM, Witmer MD (1978) Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci U S A 75:5132–5136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Struyf S, Menten P, Lenaerts JP, Put W, D'Haese A, De Clercq E, Schols D, Proost P, Van Damme J (2001) Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur J Immunol 31:2170–2178

    Article  PubMed  CAS  Google Scholar 

  • Subramanian Vignesh K, Landero Figueroa JA, Porollo A, Caruso JA, Deepe GS Jr (2013) Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity 39:697–710

    Article  PubMed  CAS  Google Scholar 

  • Sun B, Rempel HC, Pulliam L (2004) Loss of macrophage-secreted lysozyme in HIV-1-associated dementia detected by SELDI-TOF mass spectrometry. AIDS 18:1009–1012

    Article  PubMed  CAS  Google Scholar 

  • Sung TL, Rice AP (2009) miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1. PLoS Pathog 5:e1000263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swingler S, Mann AM, Zhou J, Swingler C, Stevenson M (2007) Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein. PLoS Pathog 3:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Taiwo B, Hicks C, Eron J (2010) Unmet therapeutic needs in the new era of combination antiretroviral therapy for HIV-1. J Antimicrob Chemother 65:1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson GS, Bell LC, Walker NF, Tsang J, Brown JS, Breen R, Lipman M, Katz DR, Miller RF, Chain BM, Elkington PT, Noursadeghi M (2014) HIV-1 infection of macrophages dysregulates innate immune responses to Mycobacterium tuberculosis by inhibition of interleukin-10. J Infect Dis 209:1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Walker WE, Kurscheid S, Joshi S, Lopez CA, Goh G, Choi M, Barakat L, Francis J, Fisher A, Kozal M, Zapata H, Shaw A, Lifton R, Sutton RE, Fikrig E (2015) Increased levels of macrophage inflammatory proteins result in resistance to R5-tropic HIV-1 in a subset of elite controllers. J Virol 89:5502–5514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams SA, Greene WC (2007) Regulation of HIV-1 latency by T-cell activation. Cytokine 39:63–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • World Health Organization (2016) People receiving ART by region, 2000–2016

  • Zaccheo D, Pistoia V, Castellucci M, Martinoli C (1989) Isolation and characterization of Hofbauer cells from human placental villi. Arch Gynecol Obstet 246:189–200

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Guo D, Dash PK, Arainga M, Wiederin JL, Haverland NA, Knibbe-Hollinger J, Martinez-Skinner A, Ciborowski P, Goodfellow VS, Wysocki TA, Wysocki BJ, Poluektova LY, Liu XM, McMillan JM, Gorantla S, Gelbard HA, Gendelman HE (2016) The mixed lineage kinase-3 inhibitor URMC-099 improves therapeutic outcomes for long-acting antiretroviral therapy. Nanomedicine 12:109–122

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman PA, Buckler-White A, Alkhatib G, Spalding T, Kubofcik J, Combadiere C, Weissman D, Cohen O, Rubbert A, Lam G, Vaccarezza M, Kennedy PE, Kumaraswami V, Giorgi JV, Detels R, Hunter J, Chopek M, Berger EA, Fauci AS, Nutman TB, Murphy PM (1997) Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 3:23–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zink MC, Uhrlaub J, DeWitt J, Voelker T, Bullock B, Mankowski J, Tarwater P, Clements J, Barber S (2005) Neuroprotective and anti-human immunodeficiency virus activity of minocycline. JAMA 293:2003–2011

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Benson Edagwa and Aditya Bade for their thoughtful discussions. This work was supported in part by NIH Grants R01 AG043540, P01 DA028555, P30 MH062261, R01 MH115860, R01 NS034239, R01 NS036126, and the Carol Swartz Emerging Neuroscience Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard E. Gendelman.

Ethics declarations

Conflict of Interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herskovitz, J., Gendelman, H.E. HIV and the Macrophage: From Cell Reservoirs to Drug Delivery to Viral Eradication. J Neuroimmune Pharmacol 14, 52–67 (2019). https://doi.org/10.1007/s11481-018-9785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-018-9785-6

Keywords

Navigation