Curvature-Dependent Cavity-Nanoparticle Scaffold-Based Clusters with LSPR Enhancement as SERS Substrates


Tunable local surface plasmon resonance (LSPR) enhancement properties of cavity-nanoparticle scaffold-based clusters were investigated via finite-difference time-domain (FDTD) simulations. Hollow Au-cylinder-based and hollow Au-sphere-based nanocomposites models were presented with calculated optical spectra, near-field distribution, and average enhancement. Focusing on surface curvature, concave and convex Au-surface/Au-nanoparticles were built for further understanding on the local shape dependency in complicate scaffold-based clusters. Tunable near-field enhancement contributions and scaffold-dependency were discussed for potential in plasmonic applications such as surface-enhanced Raman spectroscopy (SERS), LSPR sensor, and nanoantenna.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Liu BW, Chen S, Zhang JC, Yao X, Zhong JH, Lin HX, Huang TX, Yang ZL, Zhu JF, Liu S, Lienau C, Wang L, Ren B (2018) A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths Down to 3 Nm. Adv Mater 30(12)

  2. 2.

    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521

    CAS  Article  Google Scholar 

  3. 3.

    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons, physics reports-review Section of. Phys Lett 408(3–4):131–314

    CAS  Google Scholar 

  4. 4.

    Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6(11):709–713

    CAS  Article  Google Scholar 

  5. 5.

    Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    CAS  Article  Google Scholar 

  6. 6.

    Kim MW, Ku PC (2011) Semiconductor Nanoring Lasers. Appl Phys Lett 98(20)

  7. 7.

    Wu HY, Liu LJ, Lu M, Cunningham BT (2016) Lasing emission from plasmonic nanodome arrays. Advanced Optical Materials 4(5):708–714

    CAS  Article  Google Scholar 

  8. 8.

    Min CJ, Shen Z, Shen JF, Zhang YQ, Fang H, Yuan GH, Du LP, Zhu SW, Lei T, Yuan XC (2013) Focused Plasmonic Trapping of Metallic Particles. Nat Commun 4

  9. 9.

    Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287):392–395

    CAS  Article  Google Scholar 

  10. 10.

    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The Optical Properties of Metal Nanoparticles: The Influence of Size Shape, and Dielectric Environment. J Phys Chem B 107(3):668–677

    CAS  Article  Google Scholar 

  11. 11.

    Knight MW, Wu YP, Lassiter JB, Nordlander P, Halas NJ (2009) Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett 9(5):2188–2192

    CAS  Article  Google Scholar 

  12. 12.

    Mahmoud MA, O’Neil D, El-Sayed MA (2014) Hollow and solid metallic nanoparticles in sensing and in nanocatalysis. Chem Mater 26(1):44–58

    CAS  Article  Google Scholar 

  13. 13.

    Ni HB, Zhou Y, Liu X, Ali H, Ge L, Pan C, Chang JH, Wang TT, Liu QQ, Wang M (2018) Surface plasmons excited from close-packed nanoring tube arrays produced by nanosphere lithography. Opt Mater Express 8(12):3676–3687

    CAS  Article  Google Scholar 

  14. 14.

    Kasani S, Zheng P, Wu NQ (2018) Tailoring optical properties of a large-area plasmonic gold nanoring array pattern. J Phys Chem C 122(25):13443–13449

    CAS  Article  Google Scholar 

  15. 15.

    Hu Y, Chou TM, Wang HJ, Du H (2014) Monodisperse colloidal gold nanorings: synthesis and utility for surface-enhanced Raman scattering. J Phys Chem C 118(29):16011–16018

    CAS  Article  Google Scholar 

  16. 16.

    Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    CAS  Article  Google Scholar 

  17. 17.

    Zhou X, Li HJ, Fu SL, Xie SX, Xu HQ, Wu JJ (2011) Optical properties and plasmon resonance of coupled gold nanoshell arrays. Mod Phys Lett B 25(2):109–118

    CAS  Article  Google Scholar 

  18. 18.

    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    CAS  Article  Google Scholar 

  19. 19.

    Larsson EM, Hao F, Eurenius L, Olsson E, Nordlander P, Sutherland DS (2008) Plasmon hybridization in stacked double gold nanorings with reduced symmetry. Small 4(10):1630–1634

    CAS  Article  Google Scholar 

  20. 20.

    Mahmoud MA, Snyder B, El-Sayed MA (2010) Surface Plasmon Fields and Coupling in the Hollow Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy Theory and Experiment. J Phys Chem C 114(16):7436–7443

    CAS  Article  Google Scholar 

  21. 21.

    Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961

    CAS  Article  Google Scholar 

  22. 22.

    Shao L, Fang C, Chen H, Man YC, Wang J, Lin HQ (2012) Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres. Nano Lett 12(3):1424–1430

    CAS  Article  Google Scholar 

  23. 23.

    Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328(5982):1135–1138

    CAS  Article  Google Scholar 

  24. 24.

    Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903

    CAS  Article  Google Scholar 

  25. 25.

    Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83(21):4357–4360

    CAS  Article  Google Scholar 

  26. 26.

    Xu H, Aizpurua J, Käll M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62(3):4318–4324

    CAS  Article  Google Scholar 

  27. 27.

    You TT, Yin PG, Yang SH (2017) Scaffold-based multi-nanoparticle clusters as tunable Lspr substrates for Sers applications. Plasmonics 12(1):9–17

    CAS  Article  Google Scholar 

  28. 28.

    Chen L-Y, Yu J-S, Fujita T, Chen M-W (2009) Nanoporous copper with tunable nanoporosity for Sers applications. Adv Func Mater 19(8):1221–1226

    CAS  Article  Google Scholar 

  29. 29.

    Chen XW, Sandoghdar V, Agio M (2009) Highly efficient interfacing of guided plasmons and photons in nanowires. Nano Lett 9(11):3756–3761

    CAS  Article  Google Scholar 

  30. 30.

    Ming T, Zhao L, Yang Z, Chen H, Sun L, Wang J, Yan C (2009) Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett 9(11):3896–3903

    CAS  Article  Google Scholar 

  31. 31.

    Yang ZL, Li Y, Li ZP, Wu DY, Kang JY, Xu HX, Sun MT (2009) Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles. J Chem Phys 130(23):234705

    Article  Google Scholar 

  32. 32.

    Lombardi JR, Birke RL (2008) A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112(14):5605–5617

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (22005013, 51872011, and 51902011).

Author information




The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Huaxiang Chen or Penggang Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5.29 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

You, T., Gao, Y., Chen, H. et al. Curvature-Dependent Cavity-Nanoparticle Scaffold-Based Clusters with LSPR Enhancement as SERS Substrates. Plasmonics (2021).

Download citation


  • Cavity-nanoparticle nanocomposite
  • Finite-difference time-domain
  • Local surface plasmon resonance
  • Surface-enhanced Raman spectroscopy