Ultra-narrow-band Infrared Absorbers Based on Surface Plasmon Resonance

Abstract

Due to the advantage of improving the sensing performance, narrow-band metamaterial perfect absorbers (MPAs) have attracted much attention in the sensor field. Here, we propose an ultra-narrow-band infrared absorber (UNBIRA) based on localized surface plasmon resonance. The peak absorption of the UNBIRA exceeds 99% with the full width at half maximum (FWHM) of 1.94 nm and 6.32 nm for transverse electric (TE) wave and transverse magnetic (TM) wave in 1.5–1.8 μm. The corresponding Q-factors for TE wave and TM wave are 817 and 266, respectively. When used as an infrared refractive index sensor, the sensitivity of UNBIRA is as high as 1632.5 nm/RIU for TE wave and 1647.5 nm/RIU for TM wave. Accordingly, the figure of merits (FOMs) of 816.2/RIU for TE wave and 260.7/RIU for TM wave are achieved. This UNBIRA possesses a simple geometry structure and an excellent sensing performance, implying a great potential for application of ultra-narrow infrared sensing or detecting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

All data generated or analyzed during this study are included in this article.

Abbreviations

MPA:

Metamaterial perfect absorber

UNBIRA:

Ultra-narrow-band infrared absorber

FWHM:

Full width at half maximum

FOM:

The figure of merit

Q-factor:

Quality factor

MDM:

Metal-dielectric-metal

TE:

Transverse electric

TM:

Transverse magnetic

PML:

Perfectly matched layer

RIAE:

Refractive index of the ambient environment

RIU:

Refractive index change unit

References

  1. 1.

    Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24(23): OP98-OP120. https://doi.org/10.1002/adma.201200674

  2. 2.

    Capasso F (2018) The future and promise of flat optics: a personal perspective. Nanophotonics 7(6):953–957. https://doi.org/10.1515/nanoph-2018-0004

    Article  Google Scholar 

  3. 3.

    Chen H, Chan CT, Sheng P (2010) Transformation optics and metamaterials. Nat Mater 9(5):387–396. https://doi.org/10.1038/nmat2743

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292(5514):77–79. https://doi.org/10.1126/science.1058847

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Moitra P, Yang Y, Anderson Z, Kravchenko II, Briggs DP, Valentine J (2013) Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics 7(10):791–795. https://doi.org/10.1038/NPHOTON.2013.214

    CAS  Article  Google Scholar 

  6. 6.

    Kim SJ, Hong J, Moon S, Yun JG, Lee B (2020) Full color angular filtering of visible transmission in tapered plasmonic metamaterial. Plasmonics. https://doi.org/10.1007/s11468-020-01263-y

    Article  Google Scholar 

  7. 7.

    Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) A perfect metamaterial absorber. Phys Rev Lett 100(20):207402. https://doi.org/10.1103/PhysRevLett.100.207402

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801):977–980. https://doi.org/10.1126/science.1133628

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Dimitriadis AI, Kantartzis NV, Tsiboukis TD (2012) A polarization-/angle-insensitive, bandwidth-optimized, metamaterial absorber in the microwave regime. Appl Phys A 109(4):1065–1070. https://doi.org/10.1007/s00339-012-7385-5

    CAS  Article  Google Scholar 

  10. 10.

    Wang B, Wang L, Wang G, Huang W, Li X, Zhai X (2014) Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Tech Lett 26(2):111–114. https://doi.org/10.1109/LPT.2013.2289299

    Article  Google Scholar 

  11. 11.

    Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 16(10):7181–7188. https://doi.org/10.1364/OE.16.007181

    Article  PubMed  Google Scholar 

  12. 12.

    Wu D, Liu C, Xu Z, Liu Y, Yu Z, Yu L, Chen L, Li R, Ma R, Ye H (2018) The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater Design 139:104–111. https://doi.org/10.1016/j.matdes.2017.10.077

    Article  Google Scholar 

  13. 13.

    Liu X, Starr T, Starr AF, Padilla WJ (2010) Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys Rev Lett 104(20):207403. https://doi.org/10.1103/PhysRevLett.104.207403

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Wang J, Fan C, Ding P, He J, Cheng Y, Hu W, Cai G, Liang E, Xue Q (2012) Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Opt Express 20(14):14871–14878. https://doi.org/10.1364/OE.20.014871

    Article  PubMed  Google Scholar 

  15. 15.

    Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104. https://doi.org/10.1063/1.3442904

    CAS  Article  Google Scholar 

  16. 16.

    Wang T, Wang P, Wang Y, Qiao L (2016) A broadband far-field microwave absorber with a sandwich structure. Mater Design 95(95):486–489. https://doi.org/10.1016/j.matdes.2016.01.096

    CAS  Article  Google Scholar 

  17. 17.

    Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12(3):1443–1447. https://doi.org/10.1021/nl204118h

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Zhu J, Ma Z, Sun W, Ding F, He Q, Zhou L, Ma Y (2014) Ultra-broadband terahertz metamaterial absorber. Appl Phys Lett 105(2):021102. https://doi.org/10.1063/1.4890521

    CAS  Article  Google Scholar 

  19. 19.

    Ding F, Jin Y, Li B, Cheng H, Mo L, He S (2014) Ultrabroadband strong light absorption based on thin multilayered metamaterials. Laser Photonics Rev 8(6):946–953. https://doi.org/10.1002/lpor.201400157

    Article  Google Scholar 

  20. 20.

    Ding F, Cui Y, Ge X, Jin Y, He S (2012) Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 100(10):103506. https://doi.org/10.1063/1.3692178

    CAS  Article  Google Scholar 

  21. 21.

    Wang B, Liu S, Bian B, Mao Z, Liu X, Ma B, Chen L (2014) A novel ultrathin and broadband microwave metamaterial absorber. J Appl Phys 116(9):207402. https://doi.org/10.1063/1.4894824

    CAS  Article  Google Scholar 

  22. 22.

    Zhu L, Wang Y, Liu Y, Yue C (2017) Design and analysis of ultra broadband nano-absorber for solar energy harvesting. Plasmonics. https://doi.org/10.1007/s11468-017-0533-1

    Article  Google Scholar 

  23. 23.

    Dayal G, Ramakrishna SA (2013) Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks. J Optics 15(5):055106. https://doi.org/10.1088/2040-8978/15/5/055106

    CAS  Article  Google Scholar 

  24. 24.

    Lu X, Wan R, Zhang T (2015) Metal-dielectric-metal based narrow band absorber for sensing applications. Opt Express 23(23):29842–29847. https://doi.org/10.1364/OE.23.029842

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Zhang M, Fang J, Zhang F, Chen J, Yu H (2017) Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials. Opt Commun 405:216–221. https://doi.org/10.1016/j.optcom.2017.07.007

    CAS  Article  Google Scholar 

  26. 26.

    Wu D, Li R, Liu Y, Yu Z, Yu L, Chen L, Liu C, Ma R, Ye H (2017) Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region. Nanoscale Res Lett 12(1):427. https://doi.org/10.1186/s11671-017-2203-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Chamoli SK, Singh SC, Guo C (2020) 1-D metal-dielectric-metal grating structure as an ultra-narrowband perfect plasmonic absorber in the visible and its application in glucose detection. Plasmonics 7:1–12. https://doi.org/10.1007/s11468-020-01161-3

    CAS  Article  Google Scholar 

  28. 28.

    Feng A, Yu Z, Sun X (2018) Ultranarrow-band metagrating absorbers for sensing and modulation. Opt Express 26(22):28197–28205. https://doi.org/10.1364/OE.26.028197

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Li Z, Butun S, Aydin K (2014) Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8(8):8242–8248. https://doi.org/10.1021/nn502617t

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Cheng Y, Mao XS, Wu C, Wu L, Gong R (2016) Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing. Opt Mater 53:195–200. https://doi.org/10.1016/j.optmat.2016.01.053

    CAS  Article  Google Scholar 

  31. 31.

    Cheng Y, Zhang H, Mao XS, Gong R (2018) Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application. Mater Lett 219(15):123–126. https://doi.org/10.1016/j.matlet.2018.02.078

    CAS  Article  Google Scholar 

  32. 32.

    Wu M, Zhao X, Zhang J, Schalch J, Duan G, Cremin K, Averitt RD, Zhang X (2017) A three-dimensional all-metal terahertz metamaterial perfect absorber. Appl Phys Lett 111(5):051101. https://doi.org/10.1063/1.4996897

    CAS  Article  Google Scholar 

  33. 33.

    Liu X, Fu G, Liu M, Liu G, Liu Z (2016) High-quality plasmon sensing with excellent intensity contrast by dual narrow-band light perfect absorbers. Plasmonics 12:1–4. https://doi.org/10.1007/s11468-016-0229-y

    CAS  Article  Google Scholar 

  34. 34.

    Li R, Wu D, Liu Y, Yu L, Yu Z, Ye H (2017) Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating. Nanoscale Res Lett 12(1):1. https://doi.org/10.1186/s11671-016-1773-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Wang SS, Magnusson R (1993) Theory and applications of guided-mode resonance filters. Appl Opt 32(14):2606–2613. https://doi.org/10.1364/AO.32.002606

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Lu X, Zhang T, Wan R, Xu Y, Zhao C, Guo S (2018) Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface. Opt Express 26(8):10179–10187. https://doi.org/10.1364/OE.26.010179

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Callewaert F, Chen S, Butun S, Aydin K (2016) Narrow band absorber based on a dielectric nanodisk array on silver film. J Optics 18(7):075006. https://doi.org/10.1088/2040-8978/18/7/075006

    CAS  Article  Google Scholar 

  38. 38.

    Liao Y, Zhao Y, Zhang X, Chen Z (2017) An ultra-narrowband absorber with a compound dielectric grating and metal substrate. Opt Commun 385(15):172–176. https://doi.org/10.1016/j.optcom.2016.10.058

    CAS  Article  Google Scholar 

  39. 39.

    Liao Y, Zhao Y (2020) Ultra-narrowband dielectric metamaterial absorber for sensing based on cavity-coupled phase resonance. Results Phys 17:103072. https://doi.org/10.1016/j.rinp.2020.103072

    Article  Google Scholar 

  40. 40.

    Rakic AD, Djurisic AB, Elazar J, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Optics 37(22):5271–5283. https://doi.org/10.1364/AO.37.005271

    CAS  Article  Google Scholar 

  41. 41.

    Boidin R, Halenkovic T, Nazabal V, Benes L, Nemec P (2016) Pulsed laser deposited alumina thin films. Ceram Int 42(1):1177–1182. https://doi.org/10.1016/j.ceramint.2015.09.048

    CAS  Article  Google Scholar 

  42. 42.

    Lukyanchuk BS, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715. https://doi.org/10.1038/nmat2810

    CAS  Article  Google Scholar 

  43. 43.

    Rahmani M, Lukyanchuk BS, Hong M (2013) Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev 7(3):329–349. https://doi.org/10.1002/lpor.201200021

    CAS  Article  Google Scholar 

  44. 44.

    Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev AB, Connor JH, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. P Natl Acad Sci USA 108(29):11784–11789. https://doi.org/10.1073/pnas.1101910108

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant 61901268 and 61975209, the Sichuan Science and Technology Program under Grant 2020JDJQ0006, and Postdoctoral Foundation of China under Grant 2019M663464.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study. Liming Yuan, Aobo Ren and Jiang Wu contributed to the conception of the study. Jianming Liao performed the simulation. Xiangang Luo and Cheng Huang contributed significantly to analysis and manuscript preparation. Liming Yuan and Aobo Ren performed the data analyses and wrote the manuscript. Chen Ji helped perform the analysis with constructive discussions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiangang Luo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Liao, J., Ren, A. et al. Ultra-narrow-band Infrared Absorbers Based on Surface Plasmon Resonance. Plasmonics (2021). https://doi.org/10.1007/s11468-021-01384-y

Download citation

Keywords

  • Metamaterial
  • Ultra-narrow absorber
  • Refractive index sensor
  • Surface plasmon resonance