Design and Synthesis of Nanoencapsulation with a New Formulation of Fe@Au-CS-CU-FA NPs by Pulsed Laser Ablation in Liquid (PLAL) Method in Breast Cancer Therapy: In Vitro and In Vivo

Abstract

The purpose of this study is to prepare nanoencapsulation synthesized with a new formulation of Fe@Au-CS-CU-FA nanoparticle (NPs) by pulsed laser ablation in liquid (PLAL) method as drug delivery to treat breast cancer (T-47D) and (MCF12A) as a normal cell line. The method synthesized Fe@Au NPs using the PLAL working at wavelength 532 nm with different laser fluence (1.9, 2.2, and 2.5) J/cm2. These Fe@Au NPs were characterized by atomic force microscope (AFM), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The obtained mean sizes of Fe@Au NPs were 63.65, 32.47, and 31.18 nm at 1.9, 2.2, and 2.5 J/cm2, respectively. Results of the MTT assay of CU loaded Fe@Au-CS-FA NPs on human breast cancer cell line (T-47D) confirmed that cytotoxicity of CU can enhance when they are loaded on Fe@Au-CS-FA NPs in comparison with free CU. While results of flow cytometry showed that this combination can increase the therapeutic effects of CU by apoptosis induction in the T-47D cell line. Conclusion of Fe@Au-CS-CU-FA NPs causes a decrease in T-47D cell viability and caused induces 85% apoptosis. The in vivo study of Fe@Au-CS-CU-FA nanoformulation confirmed that the mean tumor size decreases in time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Al-Musawi S, Kadhim MJ, Hindi NKK (2018) Folated-nanocarrier for paclitaxel drug delivery in leukemia cancer therapy. J Pharm Sci Res 10(4):749–754

    CAS  Google Scholar 

  2. 2.

    Al-Musawi S, Albukhaty S, Al-Karagoly H, Almalki F (2020) Design, and synthesis of multi-functional superparamagnetic core-gold shell coated with chitosan and folate nanoparticles for targeted antitumor therapy. Nanomat 11:1. https://doi.org/10.3390/nano11010032

    Article  Google Scholar 

  3. 3.

    Chen M, Yamamuro S, Farrell D, Majetich S (2003) Gold coated iron nanoparticles for biomedical applications. J Appl Phys 93:7551–7553

    CAS  Article  Google Scholar 

  4. 4.

    Al-Musawi S, Albukhaty S, Al-Karagoly H, Sulaiman GM, Alwahibi MS, Dewir YH, Soliman DA, Rizwana H (2020) Antibacterial activity of honey/chitosan nanofibers loaded with capsaicin and gold nanoparticles for wound dressing. Molecules 25:4770. https://doi.org/10.3390/molecules25204770

    CAS  PubMed Central  Article  Google Scholar 

  5. 5.

    Al-Kinani MA, Haider AJ, Al-Musawi S (2020) Design, construction and characterization of intelligence polymer coated core–shell nanocarrier for curcumin drug encapsulation and delivery in lung cancer therapy purposes. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-020-01672-w

    Article  Google Scholar 

  6. 6.

    Adawiya JH, Mohammad JH, Mohammad SM (2018) A review on preparation of silver nano-particles. J Amer Inst of Phys 1968:030086. https://doi.org/10.1063/1.5039273

    CAS  Article  Google Scholar 

  7. 7.

    Salih AA, Nazar A, Haider AJ (2019) Antibacterial activity of zno nanoparticle prepared by pulsed laser ablation in liquid for biological sensor. Proceedings - International Conference on Developments in eSystems Engineering, DeSE

  8. 8.

    Kadhim AA, Salman JAS, Haider AJ, Ibraheem SA, Kadhim HA (2019) Effect of zinc oxide nanoparticles biosynthesized by leuconostoc mesenteroides ssp. dextranicum against bacterial skin infections. Proceedings - International Conference on Developments in eSystems Engineering, DeSE

  9. 9.

    Goon IY, Lai LMH, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: systematic control using polyethyleneimine. Chem Mater 21(4):673–681

    CAS  Article  Google Scholar 

  10. 10.

    Lingyan W et al (2005) Monodispersed core-shell Fe3O4@Au nanoparticles. J Phys Chem B 109:21593–21601

    Article  Google Scholar 

  11. 11.

    Alivisatos A (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    CAS  Article  Google Scholar 

  12. 12.

    Averitt R, Sarkar D, Halas N (1997) Plasmon resonance shifts of Au coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett 78(22):4217–4220

    CAS  Article  Google Scholar 

  13. 13.

    Baer R, Neuhauser D, Weiss S (2004) Enhanced absorption induced by a metallic nanoshell. Nano Lett 4(1):85–88

    CAS  Article  Google Scholar 

  14. 14.

    Kelly A, Lee-Ann J (2004) Bacterial separation and concentration from complex sample matrices: a review. Crit Rev Microbiol 30(1):7–24

    Article  Google Scholar 

  15. 15.

    Al-Musawi S, Hadi AJ, Hadi SJ, Hindi NKK (2019) Preparation and characterization of folated chitosan-magnetic nanocarrier for 5-fluorouracil drug delivery and studying its effect in bladder cancer therapy. J Global Pharma Tech 11(7):628–637

    Google Scholar 

  16. 16.

    Al-Kinani MA, Haider AJ, Al-Musawi S (2020) High uniformity distribution of Fe@Au preparation by a micro-emulsion method. IOP Conf Ser: Mater Sci Eng 987:012013. https://doi.org/10.1088/1757-899X/987/1/012013

  17. 17.

    Qian W, Murakami M, Ichikawa Y, Che Y (2011) Highly efficient and controllable PEGylation of gold nanoparticles prepared by femtosecond laser ablation in water. Phys Chem C 115(47):23293–23298

    CAS  Article  Google Scholar 

  18. 18.

    Amendola V, Rizzi GA, Polizzi S, Meneghetti M (2005) Synthesis of gold nanoparticles by laser ablation in toluene: quenching and recovery of the surface plasmon absorption. Phys Chem B 109(49):23125–23128

    CAS  Article  Google Scholar 

  19. 19.

    Georgiou S, Koubenakis A (2003) Laser-induced material ejection from model molecular solids and liquids: mechanisms, implications, and applications. Chem Rev 103(2):349–393

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Zhigilei L, Garrison B (1999) Mechanisms of laser ablation from molecular dynamics simulations: dependence of the initial temperature and pulse duration. Appl Phys A 69:S75–S80

    CAS  Article  Google Scholar 

  21. 21.

    Haibo Z, Xi-Wen D, Subhash C, Sergei A, Shikuan Y, Jianping H, Weiping C (2012a) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 22:1333–1353

    Article  Google Scholar 

  22. 22.

    Liu HY, Chen D, Li LL, Liu TL, Tan LF, Wu XL, Tang F (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem 50:891–895

    CAS  Article  Google Scholar 

  23. 23.

    Ma M, Chen H, Chen Y, Wang X, Chen F, Cui X, Shi J (2012) Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 33:989–998

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Hu M, Petrova H, Chen J, McLellan J, Siekkinen A, Marquez M, Xingde L, Younan X, Gregory V (2006) Ultrafast laser studies of the photothermal properties of gold nanocages. Phys Chem B 110:1520–1524

    CAS  Article  Google Scholar 

  25. 25.

    Haibo Z, Xi-Wen D, Subhash C, Sergei A, Shikuan Y, Jianping H, Weiping C (2012b) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 22(7):1333–1353

    Article  Google Scholar 

  26. 26.

    Guillermo G, Andres G, Luis M (2016) Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc Chem Res 49(4):678–686

    Article  Google Scholar 

  27. 27.

    Dongshi Z, Bilal G, Stephan B (2017) Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev 117(5):3990–4103

    Article  Google Scholar 

  28. 28.

    Tatiana E (2010) On Nanoparticle formation by laser ablation in liquids. Phys Chem C 115(12):5044–5048

    Google Scholar 

  29. 29.

    Karamipour S, Sadjadi M, Farhadyar N (2015) Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application. Spectrochim Acta Part A: Mol Biomol Spectrosc 148:146–155

    CAS  Article  Google Scholar 

  30. 30.

    Philipp W, Jurij J, Christoph R, Venkata S, Claas T, Ulf W, Mathias B, Lorenz K, Stephan B (2016) Solvent-surface interactions control the phase structure in lasergenerated iron-gold core-shell nanoparticles. Sci Rep 6(1)

  31. 31.

    Albukhaty, S.; Al-Musawi, S.; Abdul Mahdi, S.; Sulaiman, G.M.; Alwahibi, M.S.; Dewir, Y.H.; Soliman, D.A.; Rizwana, H. (2020) Investigation of Dextran-coated superparamagnetic nanoparticles for targeted vinblastine controlled release, delivery, apoptosis induction, and gene expression in pancreatic cancer cells. Molecules 25:4721. https://doi.org/10.3390/molecules25204721

    CAS  Article  Google Scholar 

  32. 32.

    Ma’mani L, Nikzad S, Kheiri-Manjili H, Al-Musawi S, Saeedi M, Askarlou S, Foroumadi A, Shafiee A (2014) Curcumin-loaded guanidine functionalized PEGylated I3ad mesoporous silica nanoparticles KIT-6: practical strategy for the breast cancer therapy. Eur J Med Chem 18(83):646–654. https://doi.org/10.1016/j.ejmech.2014.06.069

    CAS  Article  Google Scholar 

  33. 33.

    Al-Awady MJ, Balakit AA, Al-Musawi S, Alsultani MJ, Kamil Ahmed, Alabbasi M (2019) Investigation of anti-MRSA and anticancer activity of eco-friendly synthesized silver nanoparticles from palm dates extract. Nano Biomed Eng 11(2):157–169. https://doi.org/10.5101/nbe.v11i2.p157-169

    CAS  Article  Google Scholar 

  34. 34.

    Mofazzal Jahromi, M., Al-Musawi, S., Pirestani, M., Fasihi Ramandi, M., Ahmadi, K., Rajayi, H., Mohammad Hassan, Z., Kamali, M., Mirnejad, R. (2014) Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iran J Biotech 12(3):e1012. https://doi.org/10.15171/ijb.1012

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University of Technology and Genetic Engineering Department, Al-Qasim Green University (Babylon/Iraq), in Iraq for providing the research facilities.

Author information

Affiliations

Authors

Contributions

Conceptualization, Adawiya J. Haider (A.J.H.); methodology, Sharafaldin Al-Musawi (S.A.M.); validation, A.J.H.; formal analysis, S.A.M.; investigation, Maha A. Al-Kinani (M.A.K.); writing—original draft preparation, A.J.H. and S.A.M.; writing—review and editing, A.J.H. M.A.K and M.A.K. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Adawiya J. Haider.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Kinani, M.A., Haider, A.J. & Al-Musawi, S. Design and Synthesis of Nanoencapsulation with a New Formulation of Fe@Au-CS-CU-FA NPs by Pulsed Laser Ablation in Liquid (PLAL) Method in Breast Cancer Therapy: In Vitro and In Vivo. Plasmonics (2021). https://doi.org/10.1007/s11468-021-01371-3

Download citation

Keywords

  • Fe@Au NPs
  • Nanoformulation
  • Au shell
  • Fe core
  • Breast cancer
  • Drug delivery