The Effects of Pseudomagnetic Fields on Plasmon–Phonon Hybridization in Supported Graphene Probed by a Moving Charged Particle

Abstract

We analyze the effects of the strain-induced pseudomagnetic field on the subthreshold mechanism of hybridization taking place between the Dirac plasmon in graphene and the surface optical phonon modes in a nearby substrate. It is shown that the pseudomagnetic field exerts quite strong influence on the oscillatory pattern in the total potential in the plane of graphene, as well as on the stopping and the image forces on a charge, which moves parallel to the graphene at a speed below the Fermi velocity, specially for small graphene–substrate gap sizes. One may conclude that the subthreshold mechanism of the plasmon–phonon hybridization can be controlled by varying the pseudomagnetic field strength and the doping density in graphene.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Despoja V, Radović I, Karbunar L, Kalinić A, Mišković ZL (2019) Wake potential in graphene-insulator-graphene composite systems. Phys Rev B 100:035443

    CAS  Article  Google Scholar 

  2. 2.

    Debu DT, Ladani FT, French D, Bauman SJ, Herzog JB (2019) Hyperbolic plasmon-phonon dispersion on group velocity reversal and tunable spontaneous emission in graphene-ferroelectric substrate. 2D Mater 3:30

  3. 3.

    Radović I, Borka D, Mišković ZL (2012) Dynamic polarization of graphene by external correlated charges. Phys Rev B 86:125442

    Article  Google Scholar 

  4. 4.

    Radović I, Jovanović VB, Borka D, Mišković ZL (2012) Interactions of slowly moving charges with graphene: The role of substrate phonons. Nucl Instrum Methods B 279:165–168

    Article  Google Scholar 

  5. 5.

    Fei Z, Andreev GO, Bao W, Zhang LM, McLeod AS, Wang C, Stewart MK, Zhao Z, Dominguez G, Thiemens M, Fogler MM, Tauber MJ, Castro-Neto AH, Lau CN, Keilmann F, Basov DN (2011) Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface. Nano Lett 11:4701–4705

    CAS  Article  Google Scholar 

  6. 6.

    Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7:394–399

    CAS  Article  Google Scholar 

  7. 7.

    Principi A, Katsnelson MI, Vignale G (2016) Edge plasmons in two-component electron liquids in the presence of pseudomagnetic fields. Phys Rev Lett 117:196803

    Article  Google Scholar 

  8. 8.

    Khurgin JB (2015) How to deal with the loss in plasmonics and metamaterials. Nat Nanotechnol 10:2–6

    CAS  Article  Google Scholar 

  9. 9.

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7:330–334

    CAS  Article  Google Scholar 

  10. 10.

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630–634

    CAS  Article  Google Scholar 

  11. 11.

    Fischetti MV, Neumayer DA, Cartier EA (2001) Effective electron mobility in Si inversionlayers in metal-oxide-semiconductorsystems with a high-Κ insulator: The role ofremote phonon scattering. J Appl Phys 90:4587–4608

    CAS  Article  Google Scholar 

  12. 12.

    Koppens FHL, Chang DE, de Abajo FJG (2011) Graphene Plasmonics: A Platform for Strong Light-Matter Interactions. Nano Lett 11:3370–3377

    CAS  Article  Google Scholar 

  13. 13.

    Das Sarma S, Adam S, Hwang EH, Rossi E (2011) Electronic transport in two-dimensional graphene. Rev Mod Phys 83:407–470

    CAS  Article  Google Scholar 

  14. 14.

    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    CAS  Article  Google Scholar 

  15. 15.

    Kramberger C, Hambach R, Giorgetti C, Rummeli MH, Knupfer M, Fink J, Buchner B, Reining L, Einarsson E, Maruyama S, Sottile F, Hannewald K, Olevano V, Marinopoulos AG, Pichler T (2008) Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene. Phys Rev Lett 100:196803

    CAS  Article  Google Scholar 

  16. 16.

    Eberlein T, Bangert U, Nair RR, Jones R, Gass M, Bleloch AL, Novoselov KS, Geim A, Briddon PR (2008) Plasmon spectroscopy of free-standing graphene films. Phys Rev B 77:233406

    Article  Google Scholar 

  17. 17.

    Liu Y, Willis RF, Emtsev KV, Seyller TH (2008) Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys Rev B 78:201403(R)

    Article  Google Scholar 

  18. 18.

    Allison KF, Mišković ZL (2010) Friction force on slow charges moving over supported graphene. Nanotechnology 21:134017

    CAS  Article  Google Scholar 

  19. 19.

    Politano A, Radović I, Borka D, Mišković ZL, Chiarello G (2016) Interband plasmons in supported graphene on metal substrates: Theory and experiments. Carbon 96:91–97

    CAS  Article  Google Scholar 

  20. 20.

    Liu Y, Willis RF (2010) Plasmon-phonon strongly coupled mode in epitaxial graphene. Phys Rev B 81:081406(R)

    Article  Google Scholar 

  21. 21.

    Zhu X, Wang W, Yan W, Larsen MB, Boggild P, Pedersen TG, Xiao S, Zi J, Mortensen NA (2014) Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography. Nano Lett 14:2907–2913

    CAS  Article  Google Scholar 

  22. 22.

    Marinković T, Radović I, Borka D, Mišković ZL (2015a) Wake effect in the interaction of slow correlated charges with supported graphene due to plasmon-phonon hybridization. Phys Lett A 379:377–381

    Article  Google Scholar 

  23. 23.

    Marinković T, Radović I, Borka D, Mišković ZL (2015b) Probing the plasmon-phonon hybridization in supported graphene by externally moving charged particles. Plasmonics 10:1741–1749

    Article  Google Scholar 

  24. 24.

    Radović I, Borka D, Mišković ZL (2011) Wake effect in doped graphene due to moving external charge. Phys Lett A 375:3720–3725

    Article  Google Scholar 

  25. 25.

    Guinea F, Katsnelson MI, Geim AK (2010) Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys 6:30–33

    CAS  Article  Google Scholar 

  26. 26.

    Guinea F, Geim AK, Katsnelson MI, Novoselov KS (2010) Generating quantizing pseudomagnetic fields by bending graphene ribbons. Phys Rev B 81:035408

    Article  Google Scholar 

  27. 27.

    Pereira VM, Castro Neto AH, Peres NMR (2009) Tight-binding approach to uniaxial strain in graphene. Phys Rev B 80:045401

    Article  Google Scholar 

  28. 28.

    Zhang Y, Guo B, Zhai F, Jiang W (2011) Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model. Phys Rev B 97:115455

    Article  Google Scholar 

  29. 29.

    Zhang Y, Jiang W (2018) Pseudomagnetic field modulation of stopping power for a charged particle moving above graphene. Phys Plasmas 25:072107

    Article  Google Scholar 

  30. 30.

    He XL, Zhang YY, Misković ZL, Radović I, Li CZ, Song YH (2020) Interactions of moving charge with supported graphene in the presence of strain-induced pseudomagnetic field. Eur Phys J D 74:18

    CAS  Article  Google Scholar 

  31. 31.

    Radović I, Lj Hadzievski, Mišković ZL (2008) Polarization of supported graphene by slowly moving charges. Phys Rev B 77:075428

    Article  Google Scholar 

  32. 32.

    Allison KF, Borka D, Radović I, Lj Hadzievski, Mišković ZL (2009) Dynamic polarization of graphene by moving external charges: Random phase approximation. Phys Rev B 80:195405

    Article  Google Scholar 

  33. 33.

    Katsnelson MI (2006) Nonlinear screening of charge impurities in graphene. Phys Rev B 74:201401(R)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11705017, 11675036, 11775042 and 11805107) and Fundamental Research Funds for the Central Universities (Grant Nos. DUT17LK51 and DUT18TD06). Z.L.M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (Grant No. 2016-03689). I.R. acknowledges support from the Ministry of Education, Science and Technological Development of the Republic of Serbia. C.Z.L. acknowledges support from the Inner Mongolia Autonomous Region Talent Development Fund (Grant No. 2016-149).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying-Ying Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, XJ., Zhang, YY., Mišković, Z.L. et al. The Effects of Pseudomagnetic Fields on Plasmon–Phonon Hybridization in Supported Graphene Probed by a Moving Charged Particle. Plasmonics (2021). https://doi.org/10.1007/s11468-020-01369-3

Download citation