The Effect of Carrier Distribution on Performance of ENZ-Based Electro-Absorption Modulator

Abstract

Recently, epsilon-near-zero (ENZ) has been emerging as an important field of research which is the study of light-matter interactions in the presence of materials with zero permittivity. Since in many scientific works the uniform model of carrier distribution of Indium tin oxide (ITO) has been utilized, we want to investigate ENZ effect in ITO material and the effect of accurate carrier distribution on the performance of a modulator. For this reason, an electro-absorption (EA) modulators with a new configuration based on silicon slot modulator with indium thin oxide material is proposed. To study the effect of ENZ effect in ITO, the semiconductor model (realistic model) is utilized to model the carrier distribution in the ITO material. In this model, there is not any assumption. As a result, by applying the gate voltage, the insertion loss is increased 1.61 dB/μm in comparison with unbiased conditions. Also, the uniform model is used. Compared with the realistic model, the extinction ratio and figure-of-merit significantly enhance based on the uniform model, but the trends of results like insertion loss are so far from the realistic model. It can be found that the realistic model is reliable and the results are closer to reality.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Chen A (2012) Broadband optical modulators : science, technology, and applications. CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  2. 2.

    Miller DAB (2017) Attojoule Optoelectronics for Low-Energy Information Processing and Communications. J Lightwave Technol 35(3):346–396 Feb. [Online]. Available: http://jlt.osa.org/abstract.cfm?URI=jlt-35-3-346

    CAS  Article  Google Scholar 

  3. 3.

    Soref R (2006) The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron 12(6):1678–1687. https://doi.org/10.1109/JSTQE.2006.883151

    CAS  Article  Google Scholar 

  4. 4.

    Asghari M, Krishnamoorthy AV (2011) Silicon photonics: energy-efficient communication. Nat Photonics 5(5):268

    CAS  Article  Google Scholar 

  5. 5.

    Watts MR, Zortman WA, Trotter DC, Young RW, Lentine AL (2011) Vertical junction silicon microdisk modulators and switches. Opt Express 19(22):21989–22003. https://doi.org/10.1364/OE.19.021989

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Watts MR, Trotter DC, Young RW, Lentine AL (2008) “Ultralow power silicon microdisk modulators and switches,” in 2008 5th IEEE International Conference on Group IV Photonics, pp. 4–6, doi: https://doi.org/10.1109/GROUP4.2008.4638077

  7. 7.

    Li E, Gao Q, Liverman S, Wang AX (2018) One-volt silicon photonic crystal nanocavity modulator with indium oxide gate. Opt Lett 43(18):4429–4432. https://doi.org/10.1364/OL.43.004429

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Sorianello V et al (2018) Graphene--silicon phase modulators with gigahertz bandwidth. Nat Photonics 12(1):40

    CAS  Article  Google Scholar 

  9. 9.

    Watts MR, Zortman WA, Trotter DC, Young RW, Lentine AL (2010) Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator. IEEE J Sel Top Quantum Electron 16(1):159–164. https://doi.org/10.1109/JSTQE.2009.2035059

    CAS  Article  Google Scholar 

  10. 10.

    Soref RA, Bennett BR (1987) “Kramers-Kronig analysis of electro-optical switching in silicon,” in Integrated Optical Circuit Engineering IV, vol. 704, pp. 32–38

  11. 11.

    Liu J et al (2008) Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat Photonics 2(7):433

    CAS  Article  Google Scholar 

  12. 12.

    Jacobsen RS et al (2006) Strained silicon as a new electro-optic material. Nature 441(7090):199

    CAS  Article  Google Scholar 

  13. 13.

    Kim Y, Takenaka M, Osada T, Hata M, Takagi S (2014) Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators. Sci Rep 4:4683

    Article  Google Scholar 

  14. 14.

    Dong P, Shafiiha R, Liao S, Liang H, Feng NN, Feng D, Li G, Zheng X, Krishnamoorthy AV, Asghari M (2010) Wavelength-tunable silicon microring modulator. Opt Express 18(11):10941–10946. https://doi.org/10.1364/OE.18.010941

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Liao L, Samara-Rubio D, Morse M, Liu A, Hodge D, Rubin D, Keil UD, Franck T (2005) High speed silicon Mach-Zehnder modulator. Opt Express 13(8):3129–3135. https://doi.org/10.1364/OPEX.13.003129

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Liu A et al (2004) A high-speed silicon optical modulator based on a metal--oxide--semiconductor capacitor. Nature 427(6975):615

    CAS  Article  Google Scholar 

  17. 17.

    Soref R, Bennett B (1987) Electrooptical effects in silicon. IEEE J Quantum Electron 23(1):123–129. https://doi.org/10.1109/JQE.1987.1073206

    Article  Google Scholar 

  18. 18.

    Qiu X, Ruan X, Li Y, Zhang F (2018) Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator. Opt Express 26(11):13902–13914. https://doi.org/10.1364/OE.26.013902

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Shin J-S, Kim JT (2015) Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide. Nanotechnology 26(36):365201. https://doi.org/10.1088/0957-4484/26/36/365201

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25(24):3264–3294

    CAS  Article  Google Scholar 

  21. 21.

    Vasudev AP, Kang J-H, Park J, Liu X, Brongersma ML (2013) Electro-optical modulation of a silicon waveguide with an ‘epsilon-near-zero’ material. Opt Express 21(22):26387. https://doi.org/10.1364/OE.21.026387

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Amemiya T, Murai E, Gu Z, Nishiyama N, Arai S (2014) GaInAsP/InP-based optical modulator consisting of gap-surface-plasmon-polariton waveguide: theoretical analysis. J Opt Soc Am B 31(11):2908. https://doi.org/10.1364/JOSAB.31.002908

    CAS  Article  Google Scholar 

  23. 23.

    Lee HW, Papadakis G, Burgos SP, Chander K, Kriesch A, Pala R, Peschel U, Atwater HA (2014) Nanoscale conducting oxide PlasMOStor. Nano Lett 14(11):6463–6468. https://doi.org/10.1021/nl502998z

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Liu X, Zang K, Kang JH, Park J, Harris JS, Kik PG, Brongersma ML (2018) Epsilon-Near-Zero Si Slot-Waveguide Modulator. ACS Photonics 5(11):4484–4490. https://doi.org/10.1021/acsphotonics.8b00945

    CAS  Article  Google Scholar 

  25. 25.

    Jin L, Chen Q, Liu W, Song S (2016) Electro-absorption modulator with dual carrier accumulation layers based on epsilon-near-zero ITO. Plasmonics 11(4):1087–1092. https://doi.org/10.1007/s11468-015-0146-5

    CAS  Article  Google Scholar 

  26. 26.

    Abdelatty MY, Badr MM, Swillam MA (2018) Compact silicon electro-optical modulator using hybrid ITO tri-coupled waveguides. J Lightwave Technol 36(18):4198–4204. https://doi.org/10.1109/JLT.2018.2863571

    CAS  Article  Google Scholar 

  27. 27.

    Pierret R (1996) Semiconductor device fundamentals. Addison-Wesley, Reading

    Google Scholar 

  28. 28.

    Sinatkas G, Pitilakis A, Zografopoulos DC, Beccherelli R, Kriezis EE (2017) Transparent conducting oxide electro-optic modulators on silicon platforms: a comprehensive study based on the drift-diffusion semiconductor model. J Appl Phys 121(2):23109. https://doi.org/10.1063/1.4973896

    CAS  Article  Google Scholar 

  29. 29.

    Alam MZ, Meier J, Aitchison JS, Mojahedi M (2007) “Super mode propagation in low index medium,” in 2007 Conference on Lasers and Electro-Optics (CLEO), pp. 1–2, doi: https://doi.org/10.1109/CLEO.2007.4453278

  30. 30.

    Palik ED (1998) Handbook of optical constants of solids. Academic Press

  31. 31.

    Berini P (2000) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 61(15):10484–10503. https://doi.org/10.1103/PhysRevB.61.10484

    CAS  Article  Google Scholar 

  32. 32.

    Gao Q, Li E, Wang AX (2018) Comparative analysis of transparent conductive oxide electro-absorption modulators [invited]. Opt Mater Express 8(9):2850–2862. https://doi.org/10.1364/OME.8.002850

    CAS  Article  Google Scholar 

  33. 33.

    Resta R (1977) Thomas-Fermi dielectric screening in semiconductors. Phys Rev B 16(6):2717–2722. https://doi.org/10.1103/PhysRevB.16.2717

    CAS  Article  Google Scholar 

  34. 34.

    Shah MK, Lu R, Liu Y (2018) Enhanced performance of ITO-assisted electro-absorption optical modulator using sidewall angled silicon waveguide. IEEE Trans Nanotechnol 17(3):412–418. https://doi.org/10.1109/TNANO.2018.2804485

    CAS  Article  Google Scholar 

  35. 35.

    Khaleque A, Hattori HT (2017) Plasmonic electro-absorption modulator and polarization selector. J Mod Opt 64(12):1164–1174. https://doi.org/10.1080/09500340.2016.1267814

    CAS  Article  Google Scholar 

  36. 36.

    Koch U, Hoessbacher C, Niegemann J, Hafner C, Leuthold J (2016) Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides. IEEE Photonics J 8(1). https://doi.org/10.1109/JPHOT.2016.2518861

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kambiz Abedi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siahkal-Mahalle, B.H., Abedi, K. The Effect of Carrier Distribution on Performance of ENZ-Based Electro-Absorption Modulator. Plasmonics (2020). https://doi.org/10.1007/s11468-020-01187-7

Download citation

Keywords

  • Indium tin oxide
  • Optical modulator
  • Electro-absorption
  • Epsilon-near-zero
  • Optical waveguides
  • Optical absorption