How Backward Poynting Flows Arise for Surface Plasmon Waves with Lossy Metals

Abstract

We revisit the surface plasmon resonances established along a planar interface lying between a lossless dielectric and a lossy metal. By examining the orbital and spin parts of the Poynting vector, the mechanisms behind forward or backward flows are clearly illustrated. Consequently, we were able to construct more intuitive pictures of two-dimensional energy flows induced by the metallic losses. In addition, we recognized the importance of both asymmetry and symmetry hidden behind the familiar transverse-magnetic waves. Our numerical results are close to reality, since experimentally observed optical data of gold is employed for a lossy metal.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, Verlag

    Google Scholar 

  2. 2.

    Huang YJ, Lu WT, Sridhar S (2008) Nanowire waveguide made from extremely anisotropic metamaterials. Phys Rev A 77:063836

    Google Scholar 

  3. 3.

    Kildishev V, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339:1232009

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Zhong Y, Malagari SD, Hamilton T, Wasserman DM (2015) Review of mid-infrared plasmonic materials. J Nanophotonics 9:093791

    Google Scholar 

  5. 5.

    Bliokh KY, Bekshaev AY, Nori F (2017) Optical momentum and angular momentum in complex media: from the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons. New J Phys 19:123014

    Google Scholar 

  6. 6.

    Dzedolik IV, Pereskokov VS (2017) Topology of plasmon-polariton vortices on an adaptive mirror. Atmospheric Ocean Opt 30:203–208

  7. 7.

    Ajib R, Pitelet A, Pollès R, Centeno E, Ajaltouni Z, Moreau A (2019) The energy point of view in plasmonics. J Opt Soc Am B 36:1150–1154

    CAS  Google Scholar 

  8. 8.

    Gao Z, Gao F, Zhang Y, Xu H, Luo Y, Zhang B (2017) Forward/backward switching of plasmonic wave propagation using sign-reversal coupling. Adv Mater 29:1700018

    Google Scholar 

  9. 9.

    Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B, Saha S, Elder DL, Dalton LR, Boltasseva A, Shalaev VM, Kinsey N, Leuthold J (2018) Low-loss plasmon-assisted electro-optic modulator. Nature 556:483–486

    PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Novotny L, Hafner C (1994) Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys Rev E 50:4094

    CAS  Google Scholar 

  11. 11.

    Jiao X, Goeckeritz J, Blair S, Oldham M (2009) Localization of near-field resonances in bowtie antennae: influence of adhesion layers. Plasmonics 4:37–50

    CAS  Google Scholar 

  12. 12.

    Nunes FD, Vasconcelos TC, Bezerra M, Weiner J (2011) Electromagnetic energy density in dispersive and dissipative media. J Opt Soc Am B 28:1544–1552

    CAS  Google Scholar 

  13. 13.

    Caldwell JD, Lindsay L, Giannini V, Vurgaftman I, Reinecke TL, Maier SA, Glembocki OJ (2015) Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4:44–68

    CAS  Google Scholar 

  14. 14.

    Khurgin JB (2015) How to deal with the loss in plasmonics and metamaterials. Nat Nanotechnol 10:2–6

    PubMed  CAS  Google Scholar 

  15. 15.

    Boriskina SV, Cooper TA, Zeng L, Ni G, Tong JK, Tsurimaki Y, Huang Y, Meroueh L, Mahan G, Chen G (2017) Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities. Adv Opt Photon 9:775–827

    Google Scholar 

  16. 16.

    Gapska A, Łapiński M, Syty P, Sadowski W, Sienkiewicz JE, Kościelska B (2018) Au–Si plasmonic platforms: synthesis, structure and FDTD simulations. Beilstein J Nanotechnol 9:2599–2608

    PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Wolff C, Busch K, Mortensen NA (2018) Modal expansions in periodic photonic systems with material loss and dispersion. Phys Rev B 97:104203

    CAS  Google Scholar 

  18. 18.

    Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2007) Strong coupling of single emitters to surface plasmons. Phys Rev B 76:035420

    Google Scholar 

  19. 19.

    Ballester D, Tame MS, Kim MS (2010) Quantum theory of surface-plasmon polariton scattering. Phys Rev A 82:012325

    Google Scholar 

  20. 20.

    Tame MS, McEnery KR, Özdemir SK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9:329–340

    CAS  Google Scholar 

  21. 21.

    González-Tudela A, Huidobro PA, Martín-Moreno L, Tejedor C, García-Vidal FJ (2014) Reversible dynamics of single quantum emitters near metal-dielectric interfaces. Phys Rev B 89:041402

    Google Scholar 

  22. 22.

    Dlamini SG, Francis JT, Zhang X, Özdemir ŞK, Chormaic SN, Petruccione F, Tame MS (2018) Probing decoherence in plasmonic waveguides in the quantum regime. Phys Rev Applied 9:024003

    CAS  Google Scholar 

  23. 23.

    Karamlou A, Trusheim ME, Englund D (2018) Metal-dielectric antennas for efficient photon collection from diamond color centers. Opt Express 26:3341–3352

    PubMed  CAS  Google Scholar 

  24. 24.

    Siampour H, Kumar S, Davydov VA, Kulikova LF, Agafonov VN, Bozhevolnyi SI (2018) On-chip excitation of single germanium vacancies in nanodiamonds embedded in plasmonic waveguides. Light Sci Appl 7:61

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Xu D, Xiong X, Wu L, Ren XF, Png CE, Guo GC, Gong Q, Xiao YF (2018) Quantum plasmonics: new opportunity in fundamental and applied photonics. Adv Opt Photon 10:703–756

    Google Scholar 

  26. 26.

    Varguet H, Rousseaux B, Dzsotjan D, Jauslin HR, Guérin S, Colas des Francs G (2019) Non-hermitian Hamiltonian description for quantum plasmonics: from dissipative dressed atom picture to Fano states. J Phys B Atomic Mol Phys 52:055404

    Google Scholar 

  27. 27.

    Bliokh KY, Nori F (2012) Transverse spin of a surface polariton. Phys Rev A 85:061801

    Google Scholar 

  28. 28.

    Picardi MF, Bliokh KY, Rodríguez-Fortuño FJ, Alpeggiani F, Nori F (2018) Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes. Optica 5:1016–1026

    Google Scholar 

  29. 29.

    Bliokh KY, Nori F (2015) Transverse and longitudinal angular momenta of light. Phys Rep 592:1–38

    Google Scholar 

  30. 30.

    Etchegoin PG, Le Ru EC, Meyer M (2006) An analytic model for the optical properties of gold. J Chem Phys 125:164705

    PubMed  CAS  Google Scholar 

  31. 31.

    Derkachova A, Kolwas K, Demchenko I (2016) Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanosphere. Plasmonics 11:941–951

    PubMed  CAS  Google Scholar 

  32. 32.

    Kien FL, Busch T, Truong VG, Chormaic SN (2017) Higher-order modes of vacuum-clad ultrathin optical fibers. Phys Rev A 96:023835

    Google Scholar 

  33. 33.

    Zhu J, Chen Y, Zhang Y, Cai X, Yu S (2014) Spin and orbital angular momentum and their conversion in cylindrical vector vortices. Opt Lett 39:4435–4438

    PubMed  Google Scholar 

  34. 34.

    Lee HI, Mok J (2018) Orbital and spin parts of energy currents for electromagnetic waves through spatially inhomogeneous media. J Mod Opt 65:1053–1062

    Google Scholar 

  35. 35.

    Quinteiro GF, Tamborenea PI, Berakdar J (2011) Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light. Opt Express 19:26733–26741

    PubMed  CAS  Google Scholar 

  36. 36.

    Schmiegelow CT, Schulz J, Kaufmann H, Ruster T, Poschinger UG, Schmidt-Kaler F (2016) Transfer of optical orbital angular momentum to a bound electron. Nat Commun 7:12998

    PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Junge C, O’Shea D, Volz J, Rauschenbeutel A (2013) Strong coupling between single atoms and nontransversal photons. Phys Rev Lett 110:213604

    PubMed  Google Scholar 

  38. 38.

    Fong CF, Ota Y, Iwamoto S, Arakawa Y (2018) Scheme for media conversion between electronic spin and photonic orbital angular momentum based on photonic nanocavity. Opt Express 26:21219–21234

    PubMed  CAS  Google Scholar 

  39. 39.

    Barnett SM (2002) Optical angular-momentum flux. J Opt B 4:S7–S1

    Google Scholar 

  40. 40.

    Ballantine KE, Donegan JF, Eastham PR (2016) There are many ways to spin a photon: half-quantization of a total optical angular momentum. Sci Adv 2:e1501748

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Reddy IVAK, Baev A, Furlani EP, Prasad PN, Haus JW (2018) Interaction of structured light with a chiral plasmonic metasurface: giant enhancement of chiro-optic response. ACS Photonics 5:734–740

    CAS  Google Scholar 

  42. 42.

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F (2011) Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J Opt 13:064001

    Google Scholar 

  43. 43.

    Neugebauer M, Bauer T, Aiello A, Banzer P (2015) Measuring the transverse spin density of light. Phys Rev Lett 114:063901

    PubMed  CAS  Google Scholar 

  44. 44.

    van Mechelen T, Jacob Z (2016) Universal spin-momentum locking of evanescent waves. Optica 3:118–126

    Google Scholar 

  45. 45.

    Cai X, Wang J, Strain MJ, Johnson-Morris B, Zhu J, Sorel M, O’Brien JL, Thompson MG, Yu S (2012) Integrated compact optical vortex beam emitters. Science 338:363–366

    PubMed  CAS  Google Scholar 

  46. 46.

    Boriskina SV, Reinhard BM (2012) Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery. Nanoscale 4:76–90

    PubMed  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Research Foundation (NRF) of Republic of Korea (NRF-2018R1D1A1B07045905).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyoung-In Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3538 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, HI., Mok, J. How Backward Poynting Flows Arise for Surface Plasmon Waves with Lossy Metals. Plasmonics 15, 679–691 (2020). https://doi.org/10.1007/s11468-019-01074-w

Download citation

Keywords

  • Surface plasmon resonance
  • Poynting vector
  • Metallic loss
  • Orbital part
  • Spin part
  • Light spin
  • Forward flow
  • Backward flow
  • Transmittance
  • Slippage
  • Asymmetry
  • Loss-induced phenomena