Skip to main content
Log in

Excitation of Plasmon Waveguide Mode by Counterpart Coaxial Split Ring Resonators

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The improvement of excitation efficiency from free space to the longitudinal propagating plasmonic-guided wave attracts growing researchers’ interests recently. In this work, a coupling structure composed of counterpart coaxial split ring resonators and a plasmonic stripe waveguide was proposed to investigate the characteristics of the plasmonic waveguide mode excitation by using finite-difference time-domain (FDTD) method. Results showed that an extremely wide spectrum bandwidth about 930 nm which covered the communication region from 1070 nm to 2 μm was achieved and the excitation efficiencies at resonant wavelengths of 1235 nm and 1636 nm reached 36.1% and 24.5%, respectively. And the coupling wavelength can be modulated by rotating the outer split ring. Our research provides potential applications for next-generation plasmonic integrated chips and functional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314

    Article  CAS  Google Scholar 

  2. Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2007) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 70:1–87

    Article  CAS  Google Scholar 

  3. Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface plasmon circuitry. Phys Today 61(5):44–50

    Article  Google Scholar 

  4. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  5. Brongersma ML, Shalaev VM (2010) The case for plasmonics. Science 328:440–441

    Article  CAS  Google Scholar 

  6. Hill MT, Marell M, Leong ESP, Smalbrugge B, Zhu Y, Sun M, van Veldhoven PJ, Geluk EJ, Karouta F, Oei Y-S, Notzel R, Ning C-Z, Smit MK (2009) Lasing in metal-insulator-metal subwavelength plasmonic waveguides. Opt Express 17(13):11107–11112

    Article  CAS  Google Scholar 

  7. Lu Y-J, Kim J, Chen H-Y, Wu C, Dabidian N, Sanders CE, Wang C-Y, Lu M-Y, Li B-H, Qiu X, Chang W-H, Chen L-J, Shvets G, Shih C-K, Gwo S (2012) Plasmonic nanolaser using epitaxially grown silver film. Science 337:450–453

    Article  CAS  Google Scholar 

  8. Lee HW, Papadakis G, Burgos SP, Chander K, Kriesch A, Pala R, Peschel U, Atwater HA (2014) Nanoscale conducting oxide plasmostor. Nano Lett 14(11):6463–6468

    Article  CAS  Google Scholar 

  9. Chen J (2013) Numerical study of a nonplanar two-stage surface plasmonic lens illuminated by a radially polarized beam. Plasmonics 8(2):931–936

    Article  CAS  Google Scholar 

  10. Chen J, Zhu L, Wang F, Ma W (2013) An integrated multistage nanofocusing system. Plasmonics 8(4):1559–1565

    Article  CAS  Google Scholar 

  11. Huang J-S, Feichtner T, Biagioni P, Hecht B (2009) Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett 9(5):1897–1902

    Article  CAS  Google Scholar 

  12. Yang L, Li P, Wang H, Li Z (2018) Surface plasmon polariton waveguides with subwavelength confinement. Chinese Physics B 27(9):094216

    Article  Google Scholar 

  13. Guo X, Qiu M, Bao J, Wiley BJ, Yang Q, Zhang X, Ma Y, Yu H, Tong L (2009) Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett 9(12):4515–4519

    Article  CAS  Google Scholar 

  14. Guo T, Jin B, Argyropoulos C (2019) Hybrid graphene-plasmonic gratings to achieve enhanced nonlinear effects at terahertz frequencies. Physical Review Applied 11:024050

    Article  CAS  Google Scholar 

  15. Berweger S, Atkin JM, Olmon RL, Raschke MB (2010) Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. Physical Chemistry Letters 1:3427–3432

    Article  CAS  Google Scholar 

  16. Lu F, Zhang W, Huang L, Liang S, Mao D, Gao F, Mei T, Zhao J (2018) Mode evolution and nanofocusing of grating-coupling surface plasmon polaritons on metallic tip. 1(6):180010

  17. Kinzel EC, Xu X (2009) High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures. Opt Express 17(10):8036–8045

    Article  CAS  Google Scholar 

  18. Wen J, Wang K, Feng H, Chen J, Gao X, Hong R, Zhang D (2017) Ultra-broadband excitations of plasmonic waveguides by bowtie apertures. Plasmonics 12(4):1257–1262

    Article  CAS  Google Scholar 

  19. Fang Z, Fan L, Lin C, Zhang D, Meixner AJ, Zhu X (2011) Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett 11(4):1676–1680

    Article  CAS  Google Scholar 

  20. Wen J, Romanov S, Peschel U (2009) Excitation of plasmonic gap waveguides by nanoantennas. Opt Express 17(8):5925–5932

    Article  CAS  Google Scholar 

  21. Wen J, Banzer P, Kriesch A, Ploss D, Schmauss B, Peschel U (2011) Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas. Appl Phys Lett 98(10):101109

    Article  Google Scholar 

  22. Wen J, Chen J, Wang K, Dai B, Huang Y, Zhang D (2016) Broadband plasmonic logic input sources constructed with dual square ring resonators and dual waveguides. IEEE Photonics Journal 8(2):1–9

    Google Scholar 

  23. Li Q, Wei H, Xu H-X (2014) Remote excitation and remote detection of a single quantum dot using propagating surface plasmons on silver nanowire. Chinese Physics B 23(9):097302

    Article  Google Scholar 

  24. Braun K, Laible F, Hauler O, Wang X, Pan A, Fleischer M, Meixner AJ (2018) Active optical antennas driven by inelastic electron tunneling. Nanophotonics 7(9):1503–1516

    Article  CAS  Google Scholar 

  25. Yi J-M, Cuche A, Devaux E, Genet C, Ebbesen TW (2014) Beaming visible light with a plasmonic aperture antenna. ACS Photonics 1:365–370

    Article  CAS  Google Scholar 

  26. Salamin Y, Heni W, Haffner C, Fedoryshyn Y, Hoessbacher C, Bonjour R, Zahner M, Hillerkuss D, Leuchtmann P, Elder DL, Dalton LR, Hafner C, Leuthold J (2015) Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna. Nano Lett 15(12):8342–8346

    Article  CAS  Google Scholar 

  27. Vercruysse D, Zheng X, Sonnefraud Y, Verellen N, Di Martino G, Lagae L, Vandenbosch GAE, Moshchalkov VV, Maier SA, Van Dorpe P (2014) Directional fluorescence emission by individual V-antennas explained by mode expansion. ACS Nano 8(8):8232–8241

    Article  CAS  Google Scholar 

  28. Zeng J, Li L, Yang X, Gao J (2016) Generating and separating twisted light by gradient-rotation split-ring antenna metasurfaces. Nano Lett 16(5):3101–3108

    Article  CAS  Google Scholar 

  29. Denkova D, Verellen N, Silhanek AV, Valev VK, Van Dorpe P, Moshchakov VV (2013) Mapping magnetic near-field distributions of plasmonic nanoantennas. ACS Nano 7(4):3168–3176

    Article  CAS  Google Scholar 

  30. Krasnok AE, Maksymov IS, Denisyuk AI, Belov PA, Miroshnichenko AE, Simovski CR, Kivshar YS (2013) Optical nanoantennas. Physics-Uspekhi 56(6):539–564

    Article  CAS  Google Scholar 

  31. A. Taflove and S. C. Hagness, (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House, Norwood, Mass

  32. Chen X-W, Sandoghdar V, Agio M (2009) Highly efficient interfacing of guided plasmons and photons in nanowires. Nano Lett 9(11):3756–3761

    Article  CAS  Google Scholar 

  33. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (NSFC) (11474041), Scientific and Technological Developing Scheme of Jilin Province (20180101281JC), “135” Research Project of Education Bureau of Jilin Province (JJKH20190579KJ), and “111” Project of China (D17017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Xu, T., Zhao, J. et al. Excitation of Plasmon Waveguide Mode by Counterpart Coaxial Split Ring Resonators. Plasmonics 14, 1817–1822 (2019). https://doi.org/10.1007/s11468-019-00979-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00979-w

Keywords

Navigation