Skip to main content
Log in

Longitudinal Spin Splitting of Vortex Beam in Surface Plasmon Resonance

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The spin-dependent longitudinal splitting of a vortex beam carrying orbital angular momentum is studied in surface plasmon resonance. The existence of orbital angular momentum induces a spatial displacement between the two spin components of the reflected light, which is further enhanced with the excitation of a surface plasmon polariton. By optimizing the structure of the resonance configuration, an optimal condition for enhancing the longitudinal splitting is identified, where it increases to tens of micrometers, which is comparable to the transverse spin Hall effect of light in the similar case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goos F, Hänchen H (1947) Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann Phys 436:333–346

    Article  Google Scholar 

  2. Fedorov FI (1955) K teorii polnogo otrazheniya. Dokl Akad Nauk SSSR 105:465–468

    Google Scholar 

  3. Imbert C (1972) Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam. Phys Rev D 5:787–796

    Article  Google Scholar 

  4. Onoda M, Murakami S, Nagaosa N (2004) Hall effect of light. Phys Rev Lett 93:083901

    Article  Google Scholar 

  5. Bliokh KY, Bliokh YP (2006) Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys Rev Lett 96:073903

    Article  Google Scholar 

  6. Hirsch J (1999) Spin hall effect. Phys Rev Lett 83:1834–1837

    Article  CAS  Google Scholar 

  7. Qin Y, Li Y, Feng X, Xiao Y-F, Yang H, Gong Q (2011) Observation of the in-plane spin separation of light. Opt Express 19:9636–9645

    Article  Google Scholar 

  8. Hosten O, Kwiat P (2008) Observation of the spin hall effect of light via weak measurements. Science 319:787–790

    Article  CAS  Google Scholar 

  9. Ling X, Zhou X, Huang K, Liu Y, Qiu C-W, Luo H, Wen S (2017) Recent advances in the spin hall effect of light. Rep Prog Phys 80:066401

    Article  Google Scholar 

  10. Luo H, Zhou X, Shu W, Wen S, Fan D (2011) Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection. Phys Rev A 84:043806

    Article  Google Scholar 

  11. Zhou X, Ling X (2016) Enhanced photonic spin Hall effect due to surface plasmon resonance. IEEE Photon J 8:1–8

    Google Scholar 

  12. Tan XJ, Zhu XS (2016) Enhancing photonic spin Hall effect via long-range surface plasmon resonance. Opt Lett 41:2478–2481

    Article  Google Scholar 

  13. Jiang X, Wang Q, Guo J, Chen S, Dai X, Xiang Y (2018) Enhanced photonic spin hall effect with a bimetallic film surface plasmon resonance. Plasmonics 13:1467–1473

    Article  CAS  Google Scholar 

  14. Zhou X, Luo H, Wen S (2012) Weak measurements of a large spin angular splitting of light beam on reflection at the Brewster angle. Opt Express 20:16003–16009

    Article  Google Scholar 

  15. Qiu X, Zhang Z, Xie L, Qiu J, Gao F, Du J (2015) Incident-polarization-sensitive and large in-plane-photonic-spin-splitting at the Brewster angle. Opt Lett 40:1018–1021

    Article  Google Scholar 

  16. Zhu W, Yu J, Guan H, Lu H, Tang J, Zhang J, Luo Y, Chen Z (2017) The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass-air interface. Sci Rep 7:1150

    Article  Google Scholar 

  17. Zhou X, Ling X, Luo H, Wen S (2012) Identifying graphene layers via spin Hall effect of light. Appl Phys Lett 101:251602

    Article  Google Scholar 

  18. Zhou X, Xiao Z, Luo H, Wen S (2012) Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements. Phys Rev A 85:043809

    Article  Google Scholar 

  19. Qiu X, Zhou X, Hu D, Du J, Gao F, Zhang Z, Luo H (2014) Determination of magneto-optical constant of Fe films with weak measurements. Appl Phys Lett 105:131111

    Article  Google Scholar 

  20. Qiu X, Xie L, Liu X, Luo L, Zhang Z, Du J (2016) Estimation of optical rotation of chiral molecules with weak measurements. Opt Lett 41:4032–4035

    Article  Google Scholar 

  21. Pham A, Zhao A, Jiang Q, Bellessa J, Genet C, Drezet (2018) A interference eraser experiment demonstrated with all-plasmonic which-path marker based on reverse spin Hall effect of light. ACS Photonics 5:1108–1114

    Article  CAS  Google Scholar 

  22. Allen L, Beijersbergen MW, Spreeuw R, Woerdman J (1992) Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45:8185–8189

    Article  CAS  Google Scholar 

  23. Yao AM, Padgett MJ (2011) Orbital angular momentum: origins, behavior and applications. Adv Opt Photon 3(2):161–204

    Article  CAS  Google Scholar 

  24. Bliokh KY, Rodríguez-Fortuño FJ, Nori F, Zayats AV (2015) Spin–orbit interactions of light. Nat Photonics 9:796–808

    Article  CAS  Google Scholar 

  25. Liu M, Cai L, Chen S, Liu Y, Luo H, Wen S (2017) Strong spin-orbit interaction of light on the surface of atomically thin crystals. Phys Rev A 95:063827

    Article  Google Scholar 

  26. Bliokh KY, Shadrivov IV, Kivshar YS (2009) Goos–Hänchen and Imbert–Fedorov shifts of polarized vortex beams. Opt Lett 34:389–391

    Article  Google Scholar 

  27. Merano M, Hermosa N, Woerdman JP, Aiello A (2010) How orbital angular momentum affects beam shifts in optical reflection. Phys Rev A 82:023817

    Article  Google Scholar 

  28. Xiao Z, Luo H, Wen S (2012) Goos-Hänchen and Imbert-Fedorov shifts of vortex beams at air–left-handed-material interfaces. Phys Rev A 85:053822

    Article  Google Scholar 

  29. Ling X, Yi X, Zhou X, Liu Y, Shu W, Luo H, Wen S (2014) Realization of tunable spin-dependent splitting in intrinsic photonic spin hall effect. Appl Phys Lett 105:151101

    Article  Google Scholar 

  30. Li Y, Liu Y, Ling X, Yi X, Zhou X, Ke Y, Luo H, Wen S, Fan D (2015) Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces. Opt Express 23:1767–1774

    Article  CAS  Google Scholar 

  31. Zhang Y, Li P, Liu S, Zhao J (2015) Unveiling the photonic spin hall effect of freely propagating fan-shaped cylindrical vector vortex beams. Opt Lett 40:4444–4447

    Article  Google Scholar 

  32. Zhu W, Zhuo L, Jiang M, Guan H, Yu J, Lu H, Luo Y, Zhang J, Chen Z (2017) Controllable symmetric and asymmetric spin splitting of Laguerre–Gaussian beams assisted by surface plasmon resonance. Opt Lett 42:4869–4872

    Article  CAS  Google Scholar 

  33. Jiang M, Zhu W, Guan H, Yu J, Lu H, Tan J, Zhang J, Chen Z (2017) Giant spin splitting induced by orbital angular momentum in an epsilon-near-zero metamaterial slab. Opt Lett 42:3259–3262

    Article  Google Scholar 

  34. Zhu W, Jiang M, Guan H, Yu J, Lu H, Zhang J, Chen Z (2017) Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials. Photonics Res 5:684–688

    Article  CAS  Google Scholar 

  35. Bliokh KY, Aiello A (2013) Goos–Hänchen and Imbert–Fedorov beam shifts: an overview. J Opt 15:014001

    Article  Google Scholar 

  36. Wang B, Li Y, Pan M-M, Ren J-L, Xiao Y-F, Yang H, Gong Q (2013) Spin displacements of a Gaussian beam at an air–multilayer-film interface. Phys Rev A 88:043842

    Article  Google Scholar 

  37. Lahav A, Auslender M, Abdulhalim I (2008) Sensitivity enhancement of guided-wave surface-plasmon resonance sensors. Opt Lett 33:2539–2541

    Article  CAS  Google Scholar 

  38. Xiang Y, Jiang X, You Q, Guo J, Dai X (2017) Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance. Photonics Res 5:467–472

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jie Tan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict(s) of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, XJ. Longitudinal Spin Splitting of Vortex Beam in Surface Plasmon Resonance. Plasmonics 14, 1411–1417 (2019). https://doi.org/10.1007/s11468-019-00940-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00940-x

Keywords

Navigation