Skip to main content
Log in

A Three-Dimensional Linear-to-Circular Polarization Converter Tailored by the Gravity Field

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a three-dimensional (3D) linear-to-circular polarization converter (LCPC), innovatively tailored by the gravity field through the fluidity of liquid metal mercury (Hg), is designed and studied. The proposed LCPC is composed of a 3D glass cavity filled with Hg, a copper reflector, a trenched dielectric layer, and a copper patch. Due to the specially designed 3D glass cavity, Hg will flow in different parts of the glass cavity to form different resonant structures by means of rotation under the action of the gravity field. When the proposed LCPC is not rotated (is placed parallel to the xoy plane), the axial ratio band which is less than 3 dB (3-dB AR band) is obtained in the band of 32.42–42.82 GHz (the relative bandwidth is 27.64%). And when such a LCPC is rotated (is placed perpendicular to the xoy plane), the 3-dB AR band shifts to 18.88–32.86 GHz (the relative bandwidth is 54.04%). Besides, the surface current diagrams are investigated to explain the physics mechanism of the proposed LCPC, and relevant parameters are also discussed. In our design, the proposed LCPC has the advantages of wideband, tunable characteristics, and easy adjustment. In addition, it provides an innovative design idea of LCPC to promote potential applications of tunable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Smith DR, Pendry JB, Wiltshire MC (2004) Metamaterials and negative refractive index. Science 305(5685):788–792

    Article  CAS  Google Scholar 

  2. Zhou J, Dong J, Wang B, Koschny T, Kafesaki M, Soukoulis CM (2009) Negative refractive index due to chirality. Phys Rev B 79(12):121104

    Article  Google Scholar 

  3. Yan B, Zhong K, Ma H, Li Y, Sui C, Wang J, Shi Y (2017) Planar chiral metamaterial design utilizing metal-silicides for giant circular dichroism and polarization rotation in the infrared region. Opt Commun 383:57–63

    Article  CAS  Google Scholar 

  4. Knipper R, Mayerhöfer T, Kopecký V, Huebner U, Popp J (2018) Observation of giant infrared circular dichroism in plasmonic 2D-metamaterial arrays. Acs Photonics 5(4):1176–1180

    Article  CAS  Google Scholar 

  5. Doumanis E, Goussetis G, Gómez-Tornero JL, Cahill R, Fusco VF (2012) Anisotropic impedance surfaces for linear to circular polarization conversion. IEEE T Antenn Propag 60(1):212–219

    Article  Google Scholar 

  6. Cong L, Cao W, Tian Z, Zhang W, Han J, Zhang W (2012) Manipulating polarization states of terahertz radiation using metamaterials. New J Phys 14(11):115013

    Article  Google Scholar 

  7. Cheng YZ et al (2014) Ultrabroadband reflective polarization convertor for terahertz waves. Appl Phys Lett 105(18):181111

    Article  Google Scholar 

  8. Yang Y, Wang W, Moitra P, Kravcchenko II, Briggs DP, Valentine J (2014) Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14(3):1394–1399

    Article  CAS  Google Scholar 

  9. Shi Z, Yang S, Qu SW, Chen Y (2016) Circularly polarised planar Luneberg lens antenna for mm-wave wireless communication. Electron Lett 52(15):1281–1282

    Article  Google Scholar 

  10. Pedram K, Nourinia J, Ghobadi C, Karamirad M (2017) A multiband circularly polarized antenna with simple structure for wireless communication system. Microw Opt Technol Lett 59(9):2290–2297

    Article  Google Scholar 

  11. Grzyb J, Statnikov K, Sarmah N, Pfeiffer UR (2015) “A wideband 240 GHz lens-integrated circularly polarized on-chip annular slot antenna for a FMCW radar transceiver module in SiGe technology.” IEEE 2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) 1–4

  12. Kim CY et al (2009) A circularly polarized balanced radar front-end with a single antenna for 24-GHz radar applications. IEEE T Microw Theory 57(2):293–297

    Article  CAS  Google Scholar 

  13. Liang B et al (2015) A frequency and polarization reconfigurable circularly polarized antenna using active EBG structure for satellite navigation. IEEE T Antenn Propag 63(1):33–40

    Article  Google Scholar 

  14. So KK, Wong H, Luk KM, Chan CH (2015) Miniaturized circularly polarized patch antenna with low back radiation for GPS satellite communications. IEEE T Antenn Propag 63(12):5934–5938

    Article  Google Scholar 

  15. Ma HF, Wang GZ, Kong GS, Cui TJ (2014) Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces. Opt Mater Express 4(8):1717–1724

    Article  Google Scholar 

  16. Li Y, Zhang J, Qu S, Wamg J, Zheng L, Pang Y, Xu Z, Zhang A (2015) Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces. J Appl Phys 117(4):044501

    Article  Google Scholar 

  17. Zhang HF, Zhang H, Yao Y, Yang J, Liu JX (2018) A band enhanced plasma metamaterial absorber based on triangular ring-shaped resonators. IEEE Photonics J 10(4):1–10

    Google Scholar 

  18. Kong XK, Mo JJ, Yu ZY, Shi W, Li HM, Bian BR (2016) Reconfigurable designs for electromagnetically induced transparency in solid state plasma metamaterials with multiple transmission windows. Int J Mod Phys B 30(14):1650070

    Article  Google Scholar 

  19. Yu X, Gao X, Qiao W, Wen L, Yang W (2016) Broadband tunable polarization converter realized by graphene-based metamaterial. IEEE Photonic Tech L 28(21):2399–2402

    Article  CAS  Google Scholar 

  20. Luo S, Li B, Yu A, Gao J, Wang X, Zuo D (2018) Broadband tunable terahertz polarization converter based on graphene metamaterial. Opt Commun 413:184–189

    Article  CAS  Google Scholar 

  21. Chen M, Sun W, Cai J, Chang L, Xiao X (2017) Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface. Plasmonics 12(3):699–705

    Article  CAS  Google Scholar 

  22. Wang DW, Zhao WS, Xie H, Hu J, Zhou L, Chen W, Gao P, Ye J, Xu Y, Chen HS, Li EP, Yin WY (2017) Tunable THz multiband frequency-selective surface based on hybrid metal–graphene structures. IEEE T Nanotechnol 16(6):1132–1137

    Article  CAS  Google Scholar 

  23. Kim DJ, Park JS, Kim CH, Hur J, Kim CK, Cho YK, Ko JB, Park B, Kim D, Choi YK (2017) Reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma. Sci Rep 7(1):17232

    Article  Google Scholar 

  24. So JH, Thelen J, Qusba A, Hayes GJ, Lazzi G, Dickkey MD (2009) Reversibly deformable and mechanically tunable fluidic antennas. Adv Funct Mater 19(22):3632–3637

    Article  CAS  Google Scholar 

  25. Hartry A, Dorph R, Shields P, Tiffanymorales J, Romero V (2012) Circular beam-steering reconfigurable antenna with liquid metal parasitics. IEEE Tran Antenn Propag 60(4):1796–1802

    Article  Google Scholar 

  26. Zheng XX, Xiao ZY, Ling XY (2016) Broadband and efficient reflective polarization converter based on a three-dimensional metamaterial. Opt Quant Electron 48(10):461

    Article  Google Scholar 

  27. Zhang W, Zhu WM, Chia EEM, Shen ZX, Cai H, Gu YD, Ser W, Liu AQ (2014) A pseudo-planar metasurface for a polarization rotator. Opt Express 22(9):10446

    Article  CAS  Google Scholar 

  28. Su H, Lan F, Yang Z, Zhang Y, Shi Z, Li M, Shi M, Luo F, Liang Z (2017) “Terahertz multi-band reflective polarization converter based on TSRR metamaterial.” International Symposium on Antennas, Propagation and Em Theory IEEE 206–229

  29. Liu JY, Huang TJ, Liu PK (2017) “Terahertz circular-to-linear polarization converter based on graphene metasurface.” 2017 IEEE Asia Pacific Microwave Conference (APMC). IEEE 1142–1144

Download references

Funding

This work was supported by the Open Research Program in China’s State Key Laboratory of Millimeter Waves (Grant No. K201927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Zhang, HF., Liu, GB. et al. A Three-Dimensional Linear-to-Circular Polarization Converter Tailored by the Gravity Field. Plasmonics 14, 1347–1355 (2019). https://doi.org/10.1007/s11468-019-00930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00930-z

Keywords

Navigation