Skip to main content
Log in

Impact of Propagative Surface Plasmon Polaritons on the Electromagnetic Enhancement by Localized Gap Surface Plasmons Between Metallic Nanoparticles and Substrate

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The nanoparticle-on-mirror system as a surface-enhanced Raman scattering substrate is sufficient for single molecule detection and possesses advantages of high reproducibility and ease of assembly. In this paper, one single spherical gold nanoparticle (NP) placed on a flat gold substrate with a gap size of 10 nm is firstly studied. Then, two NPs with separations in order of wavelengths is investigated. The enhanced field of the localized gap surface plasmon (LGSP) in the NP-substrate nanogap is analyzed quantitatively with the finite element method, and a simplified model is proposed to describe the impact of the propagative surface plasmon polariton (SPP) on the LGSP. A 34% improvement of the enhancement factor of the Raman signal is achieved compared to a single NP. The field distribution of SPPs is found to play an important role in determining the optimal positions of NPs to generate the strongest hot spots. Then, the case of a single NP or a NP doublet in a gold groove is considered, and an 8.22-fold increase of the enhancement factor of the Raman signal is obtained compared to the case without the groove. The interference among the groove-excited SPPs, the NP-excited SPPs, and the LGSP determines the optimal positions of the NPs in the groove to generate the strongest hot spots. The present work reveals the great impact of the propagative SPPs on the field enhancement of the LGSP in the NP-substrate gap, and provides a theoretical basis for generating multiple strong hot spots by arranging NPs’ positions according to the field distribution of the propagative SPPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  2. Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  3. Ding S, You E, Tian Z, Moskovits M (2017) Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 46:4042–4076

    Article  CAS  Google Scholar 

  4. Sonntag MD, Klingsporn JM, Zrimsek AB, Sharma B, Ruvuna LK, Van Duyne RP (2014) Molecular plasmonics for nanoscale spectroscopy. Chem Soc Rev 43:1230–1247

    Article  CAS  Google Scholar 

  5. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574

    Article  CAS  Google Scholar 

  6. McLellan JM, Siekkinen A, Chen J, Xia Y (2006) Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem Phys Lett 427:122–126

    Article  CAS  Google Scholar 

  7. Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li Z, Ginger D, Xia Y (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7:1032–1036

    Article  CAS  Google Scholar 

  8. Fang J, Liu S, Li Z (2011) Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor. Biomaterials 32:4877–4884

    Article  CAS  Google Scholar 

  9. Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9:60–67

    Article  CAS  Google Scholar 

  10. Kleinman SL, Ringe E, Valley N, Wustholz KL, Phillips E, Scheidt KA, Schatz GC, Van Duyne RP (2011) Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment. J Am Chem Soc 133:4115–4122

    Article  CAS  Google Scholar 

  11. Das G, Mecarini F, Gentile F, De Angelis F, Mohan Kumar HG, Candeloro P, Liberale C, Cuda G, Di Fabrizio E (2009) Nano-patterned SERS substrate: application for protein analysis vs. temperature. Biosens. Bioelectron 24:1693–1699

    Article  CAS  Google Scholar 

  12. Park W, Ahn S, Kim Z (2008) Surface-enhanced Raman scattering from a single nanoparticle–plane junction. Chem Phys Chem 9:2491–2494

    Article  CAS  Google Scholar 

  13. Hill RT, Mock JJ, Urzhumov Y, Sebba DS, Oldenburg SJ, Chen S, Lazarides AA, Chilkoti A, Smith DR (2010) Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. Nano Lett 10:4150–4154

    Article  CAS  Google Scholar 

  14. Li L, Hutter T, Steiner U, Mahajan S (2013) Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. Analyst 138:4574–4578

    Article  CAS  Google Scholar 

  15. Mubeen S, Zhang S, Kim N, Lee S, Kramer S, Xu H, Moskovits M (2012) Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett 12:2088–2094

    Article  CAS  Google Scholar 

  16. Benz F, Tserkezis C, Herrmann LO, De Nijs B, Sanders A, Sigle DO, Pukenas L, Evans SD, Aizpurua J, Baumberg JJ (2015) Nanooptics of molecular-shunted plasmonic nanojunctions. Nano Lett 15:669–674

    Article  CAS  Google Scholar 

  17. Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR (2008) Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 8:2245–2252

    Article  CAS  Google Scholar 

  18. Huang Y, Ma L, Li J, Zhang Z (2017) Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement. Nanotechnology 28:105203

    Article  Google Scholar 

  19. Lévêque G, Martin OJF (2006) Tunable composite nanoparticle for plasmonics. Opt Lett 31:2750–2752

    Article  Google Scholar 

  20. Lévêque G, Martin OJF (2006) Optical interactions in a plasmonic particle coupled to a metallic film. Opt Express 14:9971–9981

    Article  Google Scholar 

  21. Lombardi A, Demetriadou A, Weller L, Andrae P, Benz F, Chikkaraddy R, Aizpurua J, Baumberg JJ (2016) Anomalous spectral shift of near-and far-field plasmonic resonances in nanogaps. ACS Photonics 3:471–477

    Article  CAS  Google Scholar 

  22. Huang S, Ming T, Lin Y, Ling X, Ruan Q, Palacios T, Wang J, Dresselhaus M, Kong J (2016) Ultrasmall mode volumes in plasmonic cavities of nanoparticle-on-mirror structures. Small 12:5190–5199

    Article  CAS  Google Scholar 

  23. Huang Y, Ma L, Hou M, Li J, Xie Z, Zhang Z (2016) Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror. Sci Rep 6:30011

    Article  CAS  Google Scholar 

  24. Chen S, Meng L, Shan H, Li J, Qian L, Williams CT, Yang Z, Tian Z (2016) How to light special hot spots in multiparticle-film configurations. ACS Nano 10:581–587

    Article  CAS  Google Scholar 

  25. Li X, Choy WCH, Ren X, Zhang D, Lu H (2014) Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system. Adv Funct Mater 24:3114–3122

    Article  CAS  Google Scholar 

  26. Wang X, Li M, Meng L, Lin K, Feng J, Huang T, Yang Z, Ren B (2014) Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates. ACS Nano 8:528–536

    Article  CAS  Google Scholar 

  27. Chen F, Huang Y, Wei H, Wang S, Zeng X, Cao W, Wen W (2018) Material influence on hot spot distribution in the nanoparticle heterodimer on film. Phys E 98:1–5

    Article  CAS  Google Scholar 

  28. Palik E D (1991) Handbook of optical constants of solids II, Boston

  29. García-Vidal FJ, Pendry JB (1996) Collective theory for surface enhanced raman scattering. Phys Rev Lett 77:1163–1166

    Article  Google Scholar 

  30. Bai Q, Perrin M, Sauvan C, Hugonin JP, Lalanne P (2013) Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure. Opt Express 21:27371–27382

    Article  CAS  Google Scholar 

  31. Nikitin AY, García-Vidal FJ, Martín-Moreno L (2010) Surface electromagnetic field radiated by a subwavelength hole in a metal film. Phys Rev Lett 105:073902

    Article  Google Scholar 

  32. Bigourdan F, Hugonin JP, Marquier F, Sauvan C, Greffet JJ (2016) Nanoantenna for electrical generation of surface plasmon polaritons. Phys Rev Lett 116:106803

    Article  Google Scholar 

  33. Jia H, Lalanne P, Liu H (2016) Comprehensive surface-wave description for the nano-scale energy concentration with resonant dipole antennas. Plasmonics 11:1025–1033

    Article  CAS  Google Scholar 

  34. Kim S, Shafiei F, Ratchford D, Li X (2011) Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 22:115301

    Article  Google Scholar 

  35. Shafiei F, Monticone F, Le KQ, Liu X, Hartsfield T, Alu A, Li X (2013) A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol 8:95–100

    Article  CAS  Google Scholar 

  36. Sun L, Ma T, Yang S, Kim D, Lee G, Shi J, Martinez I, Yi G, Shvets G, Li X (2016) The interplay between optical bianisotropy and magnetism in plasmonic metamolecules. Nano Lett 16:4322–4328

    Article  CAS  Google Scholar 

  37. Min C, Shen Z, Shen J, Zhang Y, Fang H, Yuan G, Du L, Zhu S, Lei T, Yuan X (2013) Focused plasmonic trapping of metallic particles. Nat Commun 4:2891

    Article  Google Scholar 

  38. Zeng Z, Liu H (2012) Electromagnetic enhancement by a T-shaped metallic nanogroove: impact of surface plasmon polaritons and other surface waves. IEEE J Sel Top Quant 18:1669–1675

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the National Natural Science Foundation of China (NSFC) (61775105, 11504270), 111 Project (B16027), Engineering Research Center of Thin Film Photo-electronics Technology of Ministry of Education, and International Cooperation Base for New PV Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Sun, F. & Liu, H. Impact of Propagative Surface Plasmon Polaritons on the Electromagnetic Enhancement by Localized Gap Surface Plasmons Between Metallic Nanoparticles and Substrate. Plasmonics 14, 1393–1403 (2019). https://doi.org/10.1007/s11468-019-00929-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00929-6

Keywords

Navigation