Skip to main content
Log in

Farfield Under Small Scattering Angle in the Rectangular Ag–Si–SiO2 Cavity

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, the farfield under small scattering angle was investigated in the rectangular Ag–Si–SiO2 cavity by FDTD. The simulation results showed that Re(E) of the farfield was related to the monitoring wavelength and was a function of monitoring wavelengths. Moreover, in the rectangular Ag–Si–SiO2 cavity, the amplitude of Re(E) changed as the silicon height d varied, and maximum amplitude A of Re(E) could be approximated as the functions of transverse length l and thickness t of silver film under small scattering angle. Re(E) was independent of the transverse length w2 and the longitudinal length d of the cavity in RCM and was also irrelevant with the dielectric constant of silver films. The amplitude A of Re(E) increased as l and t of silver film increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng Z, Sun J, Wang W-Q, Yang H (2018) Classification and localization of mixed near-field and far-field sources using mixed-order statistics. Signal Process 143:134–139

    Article  Google Scholar 

  2. Tian Y, Lian Q, Xu H (2018) Mixed near-field and far-field source localization utilizing symmetric nested array. Digital Signal Process 73:16–23

    Article  Google Scholar 

  3. Sylvester J (2006) Notions of support for farfields. Inverse Prob 22(4):1273

    Article  Google Scholar 

  4. Lv C, Li W, Jiang X, Cao J (2014) Far-field super-resolution imaging with a planar hyperbolic metamaterial lens. EPL 105:28003

    Article  Google Scholar 

  5. Cheng K, Lu G, Zhong X (2017) The Poynting vector and angular momentum density of Swallowtail-Gauss beams. Opt Commun 396:58–65

    Article  CAS  Google Scholar 

  6. Abolhassani M (2013) Rigorous formula for electromagnetic field power based on Poynting vector. Optik - Int J Light Electron Optics 124(20):4425–4428

    Article  Google Scholar 

  7. Song L, Shuangying Z, Shaobin L (2005) A revised piecewise linear recursive convolution FDTD method for magnetized plasmas. Plasma Sci Technol 7(6):3122–3126

    Article  Google Scholar 

  8. Nakamura H, Kashima N, Takayama A, Sawada K, Tamura Y, Fujiwara S, Kubo S (2013) Optimization of a corrugated millimeter-wave waveguide and a miter bend by FDTD simulation. J Phys Conf Ser 410:012046

    Article  Google Scholar 

  9. Song D-J, Yang H-W, Wang G-B (2016) A research for plasma electromagnetic character using JEC-CN-FDTD algorithm based on ICCG method. Optik - Int J Light Electron Optics 127(3):1121–1125

    Article  Google Scholar 

  10. Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FHL, García de Abajo FJ (2012) Graphene plasma waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1):431–440

    Article  CAS  Google Scholar 

  11. Bao G, Li P, Wang Y (2016) Near-field imaging with far-field data. Appl Math Lett 60:36–42

    Article  Google Scholar 

  12. Huang Z, Xu K, Pan D (2017) High efficient unidirectional surface plasma excitation utilizing coupling between metal-insulator-metal waveguide and metal-insulator interface. Opt Commun 389:128–132

    Article  CAS  Google Scholar 

  13. Wittenberg V, Rosenblit M, Sarusi G (2017) Surface plasma enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface. Infrared Phys Technol 84:43–49

    Article  CAS  Google Scholar 

  14. Dan A, Barshilia HC, Chattopadhyay K, Basu B (2017) Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: a critical review. Renew Sust Energ Rev 79:1050–1077

    Article  Google Scholar 

  15. Zhai P-W, Li C, Kattawar GW, Yang P (2007) FDTD far-field scattering amplitudes: comparison of surface and volume integration methods. J Quant Spectrosc Radiat Transf 106(1–3):590–594

    Article  CAS  Google Scholar 

  16. Li Z, Chi C (2018) Fast computation of far-field pulse-echo PSF of arbitrary arrays for large sparse 2-D ultrasound array design. Ultrasonics 84:63–73

    Article  CAS  Google Scholar 

  17. Kyoung JS, Seo MA, Park HR, Ahn KJ, Kim DS (2010) Farfield detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism. Opt Commun 283(24):4907–4910

    Article  CAS  Google Scholar 

  18. Chen B, Basaran C (2012) Far-field modeling of Moiré interferometry using scalar diffraction theory. Opt Lasers Eng 50(8):1168–1176

    Article  Google Scholar 

  19. Chaumet PC, Zhang T, Sentenac A (2015) Fast far-field calculation in the discrete dipole approximation. J Quant Spectrosc Radiat Transf 165:88–92

    Article  CAS  Google Scholar 

  20. Bonato C, Hagemeier J, Gerace D, Thon SM, Bouwmeester D (2013) Far-field emission profiles from L3 photonic crystal cavity modes. Photonics Nanostruct Fundam Appl 11(1):37–47

    Article  Google Scholar 

  21. Arca A, Clark M, Somekh M (2010) Surface plasmon resonator: design, construction, and observation in the. J Appl Phys 108:103109

    Article  Google Scholar 

  22. Li S, Liu HQ, Liu L-h, Qi-Lin XZ (2018) Effect of silver film thickness on the surface plasma resonance in the rectangular Ag-Si-SiO2 cavity. J Phys Commun 2:055024

    Article  Google Scholar 

  23. Dong Xiang (2012) Optical propagation properties of subwavelength metal gratings and plasma waveguides, Doctoral Dissertations (Hunan University):5

  24. Zhong Shunshi, Niu Maode (1995) Theoretical basis of electromagnetic field, Xi'an Electronic and Science University Press

  25. Jerry D, Wilson Anthony J, Buffa Bo Lou (2003) College Physics (5th Edition), Prentice Hall

  26. Paul Peter Urone (1998) College Physics, Brooks/Cole Publishing Company

  27. Raymond A, Serway J S (1985) College Physics, Saunders College Publishing

  28. William H. Hayt Jr., John A. Buck (2014), Engineering electromagnetic, Beijing: Tsinghua University Press

  29. Jinau Kong (2000) Electromagnetic wave theory 2, higher education press

  30. Ulaby FT (2002) Fundamentals of applied electromagnetic. Science Press, Beijing

    Google Scholar 

  31. Zhang S, Li G-C, Chen Y, Zhu X (2016) Pronounced fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation. ACS Nano 10(12):11105–11114

    Article  CAS  Google Scholar 

  32. Yang Z-J (2015) Coherent energy transfers between orthogonal radiant and weakly radiant plasmonic nanorod resonators. J Phys Chem C 119:26079–26085

    Article  CAS  Google Scholar 

  33. Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. Acsnano 6(9):7806–7813

    CAS  Google Scholar 

  34. Montgomery PC, Serio B, Anstotz F, Montaner D (2013) Farfield optical nanoscopy: how far can you go in nanometric characterization without resolving all the details. Appl Surf Sci 281:89–95

    Article  CAS  Google Scholar 

  35. Bozhevolnyia SI, Pedersenb K, Skettrupc T, Xiangsu Z, Belmontec M (1998) Far-and near-field second-harmonic imaging of ferroelectric domain walls. Opt Commun 152(4–6):221–224

    Article  Google Scholar 

  36. Wan J, Rybin O, Shulga S (2018) Farfield focusing for a microwave patch antenna with composite substrate. Results in Physics 8:971–976

    Article  Google Scholar 

  37. Sun W, Hu Y, Weimer C, Ayers K, Lee T (2017) A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics. J Quant Spectrosc Radiat Transf 188:200–213

    Article  CAS  Google Scholar 

  38. Muller J, Parent G, Fumeron S, Jeandel G, Lacroix D (2011) Near-field and far-field modeling of scattered surface waves, application to the apertureless scanning near-field optical microscopy. J Quant Spectrosc Radiat Transf 112(7):1162–1169

    Article  CAS  Google Scholar 

  39. Firoozy N, Tavakoli A (2013) Buried crack reconstruction through far-field electromagnetic inverse scattering measurement. NDT & E International 54:84–90

    Article  Google Scholar 

  40. Terakawa M, Takeda S, Tanaka Y, Obara G, Obara M (2012) Enhanced localized near field and scattered farfield for surface nanophotonics applications. Prog Quantum Electron 36(1):194–271

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos 61505052, 11074069, 61176116, and 51571088)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang-qing Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zou, Y., Liu, Hq. et al. Farfield Under Small Scattering Angle in the Rectangular Ag–Si–SiO2 Cavity. Plasmonics 14, 1385–1392 (2019). https://doi.org/10.1007/s11468-019-00928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00928-7

Keywords

Navigation