Skip to main content
Log in

Gain-Assisted Transition Metal Ternary Nitrides (Ti1−xZrxN) Core–Shell Based Sensing of Waterborne Bacteria in Drinking Water

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose gain-assisted Ti1 − xZrxN-based multilayered core–shell nanoparticles (MCSNPs) as refractive index (RI) sensor for real-time and label-free detection of waterborne bacteria. RI sensor designs optimized for diseases caused by pathogen Escherichia coli (E. coli), Serratia marcescens (S. marcescens), and Mierococcus lysodeikticus (M. lysodeikticus) are presented. Mie theory–based analysis shows that the precise incorporation of optical gain can compensate plasmonic losses at resonant wavelength and enhance sensor’s figure of merit (FOM) for bacteria detection up to ~ 106–107. The use of Ti1 − xZrxN ternary alloy as plasmonic material is advantageous as (I) Ti1 − xZrxN offers an alternative to the conventional plasmonic materials (e.g., Au, Ag, Cu, etc.); (II) specific Ti/Zr fractions in ternary Ti1 − xZrxN reduces the critical gain requirement compared to binary TiN; and (III) spectrum can be fine-tuned by controlling Ti/Zr fraction. The present work can led to the development of ultrasensitive plasmonic sensors capable of single bacteria detection as well as level of concentration of bacteria in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shishodia MS, Pathania P (2018) Estimation of sensing characteristics for refractory nitrides based gain assisted core-shell plasmonic nanoparticles. Phys Plasmas 25:042101

    Article  Google Scholar 

  2. Juneja S, Shishodia MS (2018) Surface plasmon amplification in refractory transition metal nitrides based nanoparticle dimmers. Opt Commun 433:89

    Article  Google Scholar 

  3. Shishodia MS, Juneja S (2016) Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle. J Appl Phys 119:203104

    Article  Google Scholar 

  4. GuangQi Li MS, Shishodia BD, Fainberg B, Apter M, Oren AN, Ratner MA (2012) Compensation of Coulomb blocking and energy transfer in the current voltage characteristic of molecular conduction junctions. Nano Lett 12:2228

    Article  Google Scholar 

  5. Shishodia MS, Perera AGU (2011) Heterojunction plasmonic midinfrared detectors. J Appl Phys 109:043108

    Article  Google Scholar 

  6. Shishodia MS, Jayaweera PVV, Matsik SG, Perera AGU, Liu HC, Buchanan M (2011) Surface plasmon enhanced IR absorption: design and experiment. Photonics Nanostruct Fundam Appl 9:95

    Article  Google Scholar 

  7. Deng Y, Cao G, Yang H, Li G, Chen X, Lu W (2017) Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. Sci Rep 7:10639

    Article  Google Scholar 

  8. Meng Q-Q, Zhao X, Lin CY, Chen S-J (2017) Figure of merit enhancement of a surface plasmon resonance sensor using a low refractive-index porous silica film. Sensors 17:1846

    Article  Google Scholar 

  9. Ozozco CA, Urbon C, Knight MW, Halas NJ et al (2014) Au nanomatryoshkas as efficient near-infrared photothermal tranducers for cancer treatment: Benchmarking against nanoshells. ACS Nano 6:6372

    Google Scholar 

  10. Oh SY, Heo NS, Shukla S, Huh YS et al (2017) Development of gold nanoparticle aptamer-based LSPR sensing chips for rapid detection of Salmonella typhimurium in pork meat. Sci Rep 7:10130

    Article  Google Scholar 

  11. US Environmental Protection Agency (EPA) (2002) Method 1604, “Total coliforms and Escherichia coli in water by membrane filtration using a simultaneous detection technique (MI medium)”, EPA 821-R-02-024. EPA, Washington, DC

    Google Scholar 

  12. Liu PY, Chin LK, Ser W, Chen HF, Hsieh M, Lee H (2016) Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16:634–644

    Article  CAS  Google Scholar 

  13. Liu PY, Chin LK, Ser W, Ayi TC, Yap PH, Bourouina T, Leprince-Wang Y (2014) An optofluidic imaging system to measure the biophysical signature of single waterborne bacteria. Lab Chip 14:4237–4243

    Article  CAS  Google Scholar 

  14. Coles HJ, Jennings R, Morris VJ (1975) Refractive index increment measurement for bacterial suspensions. Phys Med Biol 20:310–313

    Article  CAS  Google Scholar 

  15. Bateman JB, Wagman J, Caratensen EL (1966) Refraction and absorption of light in bacterial suspensions. Colloid Polym Sci 208:44–58

    Article  Google Scholar 

  16. Luo L, Ge C, Tao Y, Tao Y, Guo Z (2016) High-efficiency refractive index sensor based on the metallic nanoslit arrays with gain assisted materials. Nanophotonics 5:548

    Article  Google Scholar 

  17. Yang WH, Zhang C, Sun S, Jing J, Song Q, Xiao S (2017) Dark plasmonic modes based perfect absorption and refractive index sensing. Nanoscale 9:8907–8912

    Article  CAS  Google Scholar 

  18. Tao Y, Guo Z, Zhang A, Zhang J, Wang B, Qu S (2015) Gold nanoshells with gain-assisted silica core for ultra-sensitive biomolecular sensors. Opt Commun 349:193–197

    Article  CAS  Google Scholar 

  19. Naik GV, Kim J, Boltasseva A (2011) Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Mater Express 1:1090

    Article  CAS  Google Scholar 

  20. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25:3264–3294

    Article  CAS  Google Scholar 

  21. Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A (2012) Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2:478

    Article  CAS  Google Scholar 

  22. Lalisse A, Tessier G, Plain J, Baffou G (2016) Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold. Sci Rep 6:38647

    Article  CAS  Google Scholar 

  23. Patsalas P, Kalfagiannis N, Kassavetis S (2015) Optical properties and plasmonic performance of titanium nitride. Materials 8:3128–3154

    Article  CAS  Google Scholar 

  24. Naik GV, Saha B, Sands TD, Shalaev VM, Boltasseva A (2014) Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proc Nat Acad Sci B 11:7546

    Article  CAS  Google Scholar 

  25. Guler U, Suslov S, Kildishev AV, Boltasseva A, Vladimir AM (2015) Colloidal plasmonic titanium nitride nanoparticles: properties and applications. Nanophotonics 4(269)

  26. Wu ZS, Wang YP (1991) Electromagnetic scattering for multilayered sphere: recursive algorithms. Radio Sci 26:1393–1401

    Article  Google Scholar 

  27. Wu D, Xu X, Liu X (2008) Tunable near-infrared optical properties of three-layered metal nanoshells. J Chem Sci 129:074711

    Google Scholar 

  28. Zhu W, Premaratne M, Gunapala SD, Agrawal GP, Stockman MI (2014) Quasi-static analysis of controllable optical cross-sections of layered nanoparticles with a sandwiched gain layer. J Opt 16:075003

    Article  Google Scholar 

  29. Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold-silica-gold multilayer nanoshells. Opt Express 16:19579

    Article  CAS  Google Scholar 

  30. Kumar M, Ishii S, Umezawa N, Nagao T (2015) Band engineering of ternary metal nitride system Ti1-x ZrxN for plasmonic applications. Opt Mater Express 6:29

    Article  Google Scholar 

  31. Wu DJ, Cheng Y, Wu XW, Liu XJ (2014) An active metallic nanomatryushka with two similar super-resonances. J Appl Phys 116:013502

    Article  Google Scholar 

  32. Zhang H, Zhou J, Zou W, He M (2012) Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser. J Appl Phys 112:074309

    Article  Google Scholar 

  33. Gordon JA, Ziolkowski RW (2007) Investigating functionalized active coated nanoparticles for use in nano-sensing applications. Opt Express 15:12562

    Article  CAS  Google Scholar 

  34. Tao Y, Guo Z, Sun Y, Shen F, Mao X, Qu S (2015) Sliver spherical nanoshells coated gain-assisted ellipsoidal silica core for low-threshold surface plasmon amplification. Opt Commun 355:580–585

    Article  CAS  Google Scholar 

  35. Tanbe K (2008) Field enhancement around metal nanoparticles and nanoshells: systematic investigation. J Phys Chem C 112:17983

    Article  Google Scholar 

  36. Ameling R, Langguth L, Hentschel M, Mesch M, Braun PV, Giessen H (2010) Cavity-enhanced localized plasmon resonance sensing. Appl Phys Lett 97:253116

    Article  Google Scholar 

  37. Chen L, Liu Y, Yu Z, Wu D, Ma R, Zhang Y, Ye H (2016) Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity. Opt Express 24:9975–9983

    Article  CAS  Google Scholar 

  38. Zhang Z, Yang J, He X, Zhang J, Huang J, Chen D, Han Y (2018) Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18:116

    Article  Google Scholar 

  39. Liu Z, Yu M, Huang S, Liu X, Wang Y, Liu M, Pan P, Liu G (2015) Enhancing refractive index sensing capability with hybrid plasmonic photonic absorbers. J Mater Chem C 3:4222–4226

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manmohan Singh Shishodia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathania, P., Shishodia, M.S. Gain-Assisted Transition Metal Ternary Nitrides (Ti1−xZrxN) Core–Shell Based Sensing of Waterborne Bacteria in Drinking Water. Plasmonics 14, 1435–1442 (2019). https://doi.org/10.1007/s11468-019-00927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00927-8

Keywords

Navigation