Skip to main content
Log in

Controlled Synthesis of Saponin-Capped Silver Nanotriangles and Their Optical Properties

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Here, in this report, saponin-capped triangular silver nanocrystals have been synthesized in aqueous system by using only Trigonella foenum-graecum seed extract as a reducing agent. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and atomic force microscope (AFM) have been used for the study of their morphological and structural characterization, which indicate that the synthesized nanoparticles are crystalline in nature with triangular morphology having the edge length of the triangle as 80 nm approximately. UV/Vis study of the nanoparticle solution shows three absorption peaks at wavelength of 360 nm, 432 nm, and 702 nm, and these are respectively related to the transverse and longitudinal oscillations of electron, which remain almost in the same position for more than 6 months, indicating the formation of silver nanocrystals with a higher stability. Further, Fourier transform infrared spectroscopy (FTIR) spectra clearly indicate the capping of nanoparticles by saponin, one of the components of Trigonella foenum-graecum extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    CAS  PubMed  Google Scholar 

  2. Carrasco G, Urrestarazu M (2010) Green chemistry in protected horticulture: the use of peroxyacetic acid as a sustainable strategy. Int J Mol Sci 11(5):1999–2009

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mohamad NAN, Arham NA, Jai J, Hadi A (2014) Plant extract as reducing agent in synthesis of metallic nanoparticles: a review. Adv Mater Res 832:350–355

    Google Scholar 

  4. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications. Saudi Pharm J 24:473–484

    PubMed  Google Scholar 

  5. Tavakoli F, Niasari MS, Ghanbari DS, Mashkani MH, Saberyan K (2014) Application of glucose as a green capping agent and reductant to fabricate CuI micro/nanostructures. Mater Res Bull 49(1):14–20

    CAS  Google Scholar 

  6. Mamdouh SM, Sawsan SH, Alaa EA, Nessma MN (2012) Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes. J Mol Struct 1014:17–25

    Google Scholar 

  7. Rengasamy RRK, Rajasekaran A, Perumal A (2011) Fourier transform infrared spectroscopy analysis of seagrass polyphenols. Curr Bioact Compd 7:118–125

    Google Scholar 

  8. Almutairi MS, Ali M (2014) Direct detection of saponins in crude extracts of soapnuts by FTIR. Nat Prod Res 29:1271–1275

    PubMed  Google Scholar 

  9. Anbarasan M, Kalaiselvi R, Udayamathi M, Rajasekar P (2017) Characterization and in vitro antibacterial activity of saponin conjugated silver nanoparticles against bacteria that cause burn wound infection. World J Microbiol Biotechnol 33:147

    Google Scholar 

  10. Panikkanvalappil RS, Theruvakkattil SS, Akshaya KS, Thalappil P (2011) Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev 10:3402

    Google Scholar 

  11. Millstone JE, Georganopoulou DG, Xu X, Wei W, Li S, Mirkin CA (2008, 2176) DNA-gold triangular nanoprism conjugates. Small:4

  12. Santos IP, Puebla RAA, Marzan LML (2010) Synthetic routes and Plasmonic properties of Noble metal Nanoplates. Eur J Inorg Chem 2010:4288–4297

  13. Pastoriza SI, Liz-Marzan LM (2008) Colloidal silver nanoplates. State of the art and future challenges. J Mater Chem 18:1724–1737

    Google Scholar 

  14. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325

    CAS  Google Scholar 

  15. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Das R, Sarkar S (2015) Optical properties of silver nano-cubes. Opt Mater 48:203–208

    CAS  Google Scholar 

  17. Elechiguerra JL, Gasgab JR, Yacaman MJ (2006) The role of twinning in shape evolution of anisotropic noble metal nanostructures. J Mater Chem 16:3906–3919

    CAS  Google Scholar 

  18. Awwad AM, Nid M (2012) Green synthesis of silver nanoparticles by mulberry leaves extract. Nanosci Nanotechnol 2(4):125–128

    CAS  Google Scholar 

  19. Umesh BJ, Vishwas AB (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. Seed extract and its antibacterial activity. Ind Crop Prod 46:132–137

    Google Scholar 

  20. Jani R, Udipi SA, Ghugre PS (2009) Mineral content of complementary foods. Indian J Pediatr 76:37–44

    PubMed  Google Scholar 

  21. Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275

    Google Scholar 

  22. Vidhu VK, Philip D (2014) Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 56:54–62

    CAS  PubMed  Google Scholar 

  23. Dubey SP, Lahtinen M, Sarkka H, Sillanpaa M (2010) Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf 80:26–33

    CAS  Google Scholar 

  24. Cruz D, Falé PL, Mourato A, Vaz PD, Serralheiro ML, Lino AR (2010) Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (lemon verbena). Colloids Surf B: Biointerfaces 81(1):67–73

    CAS  PubMed  Google Scholar 

  25. Aswathy AS, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc 97:1–5

    Google Scholar 

  26. Mahmooda MN, Yahya IK (2017) Nutrient and phytochemical of fenugreek (Trigonella foenum graecum) seeds. International Journal of Sciences: Basic and Applied Research 36(3):203–213

    Google Scholar 

  27. Rehaman S, srinivasan S, Amatullah N (2012) Screening and biochemical quan-tification of phytochemicals in fenugreek (Trigonella foenum-graecum). Res J Pharm Biol Chem Sci 3:167

    Google Scholar 

  28. Khan H, Rehman SU, Pasha I, Rehman KU, Siddique MI, Khalid A (2016) Comparative study of date and fenugreek seeds phenolics properties. Pak J Food Sci 26(4):198–210

    CAS  Google Scholar 

  29. Kumar M, Parsad M, Arya RK (2013) Grain yield and quality improvement in fenugreek: a review. Forage Res 39(1):1–9

    Google Scholar 

  30. Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: pro oxidant and antioxidant properties. Free Radic Biol Med 22:861–870

    CAS  PubMed  Google Scholar 

  31. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81:81–86

    CAS  PubMed  Google Scholar 

  32. El-Bahy GMS (2005) FTIR and Raman spectroscopic study of fenugreek (Trigonella foenum graecum L.) seeds. J Appl Spectrosc 72:111–116

    CAS  Google Scholar 

  33. Germain V, Jing L, Ingert D, Wang ZL, Pileni MP (2003) Stacking faults in formation of silver nanodisks. J Phys Chem B 107:34

    Google Scholar 

  34. Xiong Y, Cai H, Yin Y, Xia Y (2007) Synthesis and characterization of fivefold twinned nanorods and right bipyramids of palladium. Chem Phys Lett 440:273–278

    CAS  Google Scholar 

  35. Washio I, Xiong Y, Yin Y, Xia Y (2006) Reduction by the end groups of poly(vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of ag triangular nanoplates. Adv Mater 18:1745–1749

    CAS  Google Scholar 

  36. Xiong Y, Washio I, Chen J, Cai H, Li ZY, Xia Y (2006) Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 22(20):8563–8570

    CAS  PubMed  Google Scholar 

  37. Cai LJ, Wang M, Hu Y, Qian DJ, Chen M (2011) Synthesis and mechanistic study of stable water-soluble noble metal nanostructures. Nanotechnology 22:28

    Google Scholar 

  38. Xiong Y, McLellan JM, Chen J, Yin Y, Li ZY, Xia Y (2005) Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J Am Chem Soc 127(48):17118–17127

    CAS  PubMed  Google Scholar 

  39. Sun Y, Xia Y (2003) Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv Mater 15:695–699

    CAS  Google Scholar 

  40. Sun Y, Mayers B, Xia Y (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3(5):675–679

    CAS  Google Scholar 

  41. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104(6):1153–1175

    CAS  Google Scholar 

  42. Zhang JM, Ma F, Xu KW (2004) Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl Surf Sci 229:34–42

    CAS  Google Scholar 

  43. Luoa X, Li Z, Yuana C, Chenb Y (2011) Polyol synthesis of silver nanoplates: the crystal growth mechanism based on a rivalrous adsorption. Mater Chem Phys 128:77–82

    Google Scholar 

  44. Emilie R, Richard PVD, Laurence DM (2013) Kinetic and thermodynamic modified Wulff constructions for twinned nanoparticles. J Phys Chem C 117(31):15859–15870

    Google Scholar 

  45. Lim B, Jiang M, Tao J, Camargo PHC, Zhu Y, Xia Y (2009) Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Funct Mater 19:189–200

    CAS  Google Scholar 

  46. Bulut E, Ozacar M (2009) Facile synthesis of silver nanostructure using hydrolysable tannin. Ind Eng Chem 48:5686–5690

    CAS  Google Scholar 

  47. Schulze N, Koetz J (2017) Kinetically controlled growth of gold nanotriangles in a vesicular template phase by adding a strongly alternating polyampholyte. J Dispers Sci Technol 38(8):1073–1078

    CAS  Google Scholar 

  48. Immanuel ETJ, Sethuraman MG (2012) Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 47:1351–1357

    Google Scholar 

  49. Bankura KP, Maity D, Mollick MMR, Mondal D, Bhowmick B, Bain MK, Chakraborty A, Sarkar J, Acharya K, Chattopadhyay D (2012) Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr Polym 89:1159–1165

    CAS  PubMed  Google Scholar 

  50. Kumar VG, Gokavarapu SD, Rajeswari A, Dhas TS, Karthick V, Kapadia Z, Shrestha T, Barathy IA, Roy A, Sinha S (2011) Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids Surf B Biointerfaces 87:159

    CAS  PubMed  Google Scholar 

  51. Venkatachalam M, Govindaraju K, Mohamed Sadiq A, Tamilselvan S, Ganesh Kumar V, Singaravelu G (2013) Functionalization of gold nanoparticles as antidiabetic nanomaterial. Spectrochim Acta A Mol Biomol Spectrosc 116:331–338

    CAS  PubMed  Google Scholar 

  52. Almutairi MS, Ali M (2015) Direct detection of saponins in crude extracts of soapnuts by FTIR. Nat Prod Res 29(13):1271–1275

    CAS  PubMed  Google Scholar 

  53. Doha S, Xuejia Z, Feng L, Shuge T (2014) Fourier transform infrared (FT-IR) spectroscopy for discrimination of fenugreek seeds from different producing areas. J Chem Pharm Res 6(9):19–24

    Google Scholar 

  54. Samal K, Das C, Mohanty K (2017) Eco-friendly biosurfactant saponin for the solubilization of cationic and anionic dyes in aqueous system. Dyes Pigments 140:100–108

    CAS  Google Scholar 

  55. Ayodhya D, Venkatesham M, kumari AS, Reddy GB, Veerabhadram G (2015) One-pot sonochemical synthesis of CdS nanoparticles: photocatalytic and electrical properties. Int J Ind Chem 6:261–271

    CAS  Google Scholar 

  56. Zeng J, Jia H, An J, Han X, Xu W, Zhao B, Ozaki Y (2008) Preparation and SERS study of triangular silver nanoparticle self-assembled films. J Raman Spectrosc 39:1673–1678

    CAS  Google Scholar 

  57. Xaviera J, Vincenta S, Medera F, Vollmera F (2018) Advances in optoplasmonic sensors – combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles. Nanophotonics 7(1):1–38

    Google Scholar 

  58. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    CAS  Google Scholar 

  59. Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548):1901–1903

    CAS  PubMed  Google Scholar 

  60. Molly MM, Anne AL (2006) Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering. J Opt A Pure Appl Opt 8:S239–S249

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to SAIF NEHU, Shillong, and SAIF, IITM, India, for providing the TEM and FTIR analyses respectively, and to Krishna Deb, Department of Physics, NIT Agartala, for providing XRD data.

Funding

The authors are grateful to the SERB-DST, Govt. of India for providing the financial grant (Project File Number: EMR/2016/005538, Dated: 15-Jun-2017) for this work and to FIST-DST Program Govt. of India (Ref. No. SR/FST/PSI-191/2014, Dated 21.11.2014) for the financial grant to the Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratan Das.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, B., Das, R. Controlled Synthesis of Saponin-Capped Silver Nanotriangles and Their Optical Properties. Plasmonics 14, 1365–1375 (2019). https://doi.org/10.1007/s11468-019-00923-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00923-y

Keywords

Navigation