Skip to main content
Log in

A Theoretical Study on the Influence of Carrier Generation on Drain-Source Current of Graphene Nanoscroll Transistors

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A novel approach is presented in order to study the effects of carrier generation on the drain-source current of graphene nanoscroll field effect transistors (GNSFET). In this method, ionisation carrier concentration is calculated and included in the drain-source current. In addition, a simulation approach based on Monte Carlo is employed in order to calculate ionisation coefficient. Finally, the current is calculated including ionisation and not including ionisation and compared together at different conditions in order to investigate the effect of ionisation. The results show that this mechanism is not ignorable in graphene-based transistors as it was in most cases in silicon transistors. In addition, the breakdown voltage has been calculated analytically and compared with fabrication results of couterparts in silicon technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    Article  CAS  Google Scholar 

  2. Dai H (2001) Carbon nanotubes: synthesis, structure, properties, and applications. In: Topics in applied physics. Springer, Berlin

  3. Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73(17):2447–2449

    Article  CAS  Google Scholar 

  4. Ghadiry M et al (2012) Analysis of a novel full adder designed for implementing in carbone nanotube technology. Journal of Circuits, Systems, and Computers 21(05):1250042

    Article  Google Scholar 

  5. Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299(5611):1361–1361

    Article  CAS  Google Scholar 

  6. Khaledian M et al (2014) Carrier statistics and quantum capacitance models of graphene nanoscroll. J Nanomater 2014:101–101

    Article  Google Scholar 

  7. Zhao J, Yang B, Yang Z, Zhang P, Zheng Z, Ren W, Yan X (2014) Facile preparation of large-scale graphene nanoscrolls from graphene oxide sheets by cold quenching in liquid nitrogen. Carbon 79:470–477

    Article  CAS  Google Scholar 

  8. Ahmad H, Ghadiry M, Manaf AA (2016) A new approach to study carrier generation in graphene nanoribbons under lateral bias. Mater Express 6(3):283–288

    Article  CAS  Google Scholar 

  9. Neto AC et al (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162

    Article  Google Scholar 

  10. Khaledian M, Ismail R, Saeidmanesh M, Ghadiry M, Akbari E (2015) Sensitivity modelling of graphene nanoscroll-based NO2 gas sensors. Plasmonics 10(5):1133–1140

    Article  CAS  Google Scholar 

  11. Zhong Y, Zhen Z, Zhu H (2017) Graphene: fundamental research and potential applications. FlatChem 4:20–32

    Article  CAS  Google Scholar 

  12. Xie X, Ju L, Feng X, Sun Y, Zhou R, Liu K, Fan S, Li Q, Jiang K (2009) Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett 9(7):2565–2570

    Article  CAS  Google Scholar 

  13. Xu Z, Zheng B, Chen J, Gao C (2014) Highly efficient synthesis of neat graphene nanoscrolls from graphene oxide by well-controlled lyophilization. Chem Mater 26(23):6811–6818

    Article  CAS  Google Scholar 

  14. Taji S, Karimi A, Ghadiry M, Fotovatikhah F (2015) An analytical approach to calculate power and delay of carbon-based links in on-chip networks. J Comput Theor Nanosci 12(8):1775–1779

    Article  CAS  Google Scholar 

  15. Ghadiry M et al (2011) Design and analysis of a new carbon nanotube full adder cell. J Nanomater 2011:36

    Article  Google Scholar 

  16. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5(7):487–496

    Article  CAS  Google Scholar 

  17. Ghadiry M, Nadi M, Saiedmanesh M, Abadi HKF (2014) An analytical approach to study breakdown mechanism in graphene nanoribbon field effect transistors. J Comput Theor Nanosci 11(2):339–343

    Article  CAS  Google Scholar 

  18. Saeidmanesh M, Ghadiry MH, Khaledian M, Kiani MJ, Ismail R (2014) Carrier scattering and impact ionization in bilayer graphene. J Comput Electron 13(1):180–185

    Article  CAS  Google Scholar 

  19. Fang T et al (2011) High-field transport in two-dimensional graphene. Phys Rev B 84:125450

  20. Ghadiry M, Manaf ABA, Nadi M, Rahmani M, Ahmadi MT (2012) Theory of ionization mechanism in graphene nanoribbons. J Comput Theor Nanosci 9(12):2190–2192

    Article  CAS  Google Scholar 

  21. Park W-D, Tanioka K (2014) Avalanche multiplication and impact ionization in amorphous selenium. Jpn J Appl Phys 53(3):1347–4065

    Google Scholar 

  22. Ghadiry M, Nadi M, Saiedmanesh M, Abadi HKF (2014) An analytical approach to study breakdown mechanism in graphene nanoribbon field effect transistors. J Comput Theor Nanosci 11(2):339–343

    Article  CAS  Google Scholar 

  23. Ryzhii V, Ryzhii M, Satou A (2008) Current-voltage characteristics of a graphene-nanoribbon field-effect transistor. J Appl Phys 103:094510

    Article  Google Scholar 

  24. Wang X et al (2008) Room temperature all semiconducting sub-10nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803

    Article  Google Scholar 

  25. Rubel O, Potvin A, Laughton D (2011) Generalized lucky-drift model for impact ionization in semiconductors with disorder. J Phys Condens Matter 23(5):055802

    Article  CAS  Google Scholar 

  26. Su V et al (2008) Breakdown behavior of 40-nm PD-SOI NMOS device considering STI-induced mechanical stress effect. IEEE Electron Device Lett 29(6):612–614

    Article  CAS  Google Scholar 

  27. Wong H (2000) Drain breakdown in submicron MOSFETs: a review. Microelectron Reliab 40(1):3–15

    Article  Google Scholar 

  28. Sun E et al (1978) Breakdown mechanism in short-channel MOS transistors. In: Electron devices meeting, 1978 International. IEEE. https://doi.org/10.1109/IEDM.1978.189459

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Amiri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, I.S., Mohammadi, H. & Yupapin, P. A Theoretical Study on the Influence of Carrier Generation on Drain-Source Current of Graphene Nanoscroll Transistors. Plasmonics 14, 1329–1334 (2019). https://doi.org/10.1007/s11468-019-00920-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00920-1

Keywords

Navigation