Skip to main content
Log in

Polarization-Independent Narrowband Near-Perfect Absorption Based on One-Dimension Embedded Aluminum Grating

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In the past, the polarization-insensitive absorption is realized mainly employing the two-dimensional periodic structure of fourfold rotational symmetry, which greatly increases the manufacturing complexity and cost. Here, we present the numerical design of a polarization-independent near-perfect absorber incorporating one-dimensional embedded aluminum grating. The absorption peaks near 99% at 520-nm wavelength for different polarization angles are achieved. The underlying mechanism associated with the resonance is attributed to the magnetic polariton resonance and the cavity-mode resonance for TM and TE polarization, respectively, and further explained by the inductor-capacitor circuit model and the eigen equation of cavity mode. Furthermore, the effects of geometrical parameters of the nano-cavity on the absorption performance are discussed. The proposed structure may provide a new way to achieve polarization-independent absorption with one-dimensional meta-surface, which has broad applications in plasmonic sensors, photo-detectors, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dincer F, Akgol O, Karaaslan M, Unal E, Sabah C (2014) Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime. Prog Electromagn Res 144(1):93–101

    Article  Google Scholar 

  2. Mann S, Garnett EC (2015) Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells. ACS Photonics 2(7):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rufangura P, Sabah C (2016) Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application. J Alloys Compd 680:473–479

    Article  CAS  Google Scholar 

  4. Lu X, Wan R, Liu F, Zhang T (2016) High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures. J Mod Opt 63(2):177–183

    Article  CAS  Google Scholar 

  5. Bagheri S, Strohfeldt N, Sterl F, Berrier A, Tittl A (2016) Large-area low-cost plasmonic perfect absorber chemical sensor fabricated by laser interference lithography. SPIE Opt Photon 1

  6. Akhlaghi MK, Schelew E, Young JF (2015) Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation. Nat Commun 6:8233

    Article  PubMed  Google Scholar 

  7. Shoshi A, Maier T, Brueckl H (2015) Enhanced wavelength-selective absorber for thermal detectors based on metamaterials. J Sens Sens Syst 5(1):171–178

    Article  Google Scholar 

  8. Granier CH, Dowling JP, Veronis G (2015) Wideband and wide angle thermal emitters for use as lightbulb filaments. SPIE Nanosci Eng

  9. Diem M, Koschny T, Soukoulis CM (2008) Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys Rev B Condens Matter 79(3):3101

    Google Scholar 

  10. Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107(4):045901

    Article  CAS  PubMed  Google Scholar 

  11. Landy NI, Sajuyigbe S, Mock J, Smith D, Padilla W (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Article  CAS  PubMed  Google Scholar 

  12. Lee KT, Ji C, Guo LJ (2016) Wide-angle, polarization-independent ultrathin broadband visible absorbers. Appl Phys Lett 108(3):59

    Google Scholar 

  13. Luo M, Shen S, Zhou L, Wu S, Zhou Y, Chen L (2017) Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Opt Express 25(14):16715–16724

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Luo M, Chen L (2017) Polarization-independent near-perfect absorber in the visible regime based on one-dimensional meta-surface. Plasmonics 12(6):1–7

    Article  CAS  Google Scholar 

  15. Liu Z, Liu G, Fu G, Huang S, Ren S, Wang Z, Liu M, Liu X (2016) High-quality plasmon sensing with excellent intensity contrast by dual narrow-band light perfect absorbers. Plasmonics 12(1):1–4

    Google Scholar 

  16. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2(1):517

    Article  CAS  PubMed  Google Scholar 

  17. Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):4184

    Article  CAS  Google Scholar 

  18. Wang J, Chen Y, Hao J, Yan M, Qiu M (2011) Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared. J Appl Phys 109(7):074510

    Article  CAS  Google Scholar 

  19. Liu X, Starr T, Starr AF, Padilla WJ (2010) Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys Rev Lett 104(20):207403

    Article  CAS  PubMed  Google Scholar 

  20. Cao T, Wei C, Simpson RE, Zhang L, Cryan MJ (2013) Rapid phase transition of a phase-change metamaterial perfect absorber. Opt Mater Express 3(8):1101–1110

    Article  CAS  Google Scholar 

  21. Feng R, Qiu J, Cao Y, Liu L, Ding W, Chen L (2015) Wide-angle and polarization independent perfect absorber based on one-dimensional fabrication-tolerant stacked array. Opt Express 23(16):21023

    Article  CAS  PubMed  Google Scholar 

  22. Moharam MG, Gaylord TK (1983) Rigorous coupled-wave analysis of grating diffraction—E-mode polarization and losses. J Opt Soc Am 73(4):451–455

    Article  Google Scholar 

  23. Moharam MG, Gaylord TK, Grann EB, Pommet DA (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am 12(5):1068–1076

    Article  Google Scholar 

  24. Palik ED (1998) Handbook of optical constants of solids. Academic Press, New York

    Google Scholar 

  25. Lee BJ, Wang LP, Zhang ZM (2015) Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Opt Express 16(15):11328

    Article  CAS  Google Scholar 

  26. Wang LP, Zhang ZM (2009) Resonance transmission or absorption in deep gratings explained by magnetic polaritons. Appl Phys Lett 95(11):549

    Google Scholar 

  27. Lu Y, Cho MH, Lee YP, YullRhee J (2008) Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits. Appl Phys Lett 93(6):2845

    Article  CAS  Google Scholar 

  28. Feng R, Qiu J, Cao Y, Liu L, Ding W, Chen L (2014) Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure. Appl Phys Lett 105(18):181102

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC, Grant No. 61505134, 61575133, 91023044), National Key Research and Development Plan (Grant No. 2016YFF0100900), Jiangsu Science and Technology Project (Grant No. BE2016079, BZ2016008), and the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghui Luo or Maocheng Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, H., Luo, M. et al. Polarization-Independent Narrowband Near-Perfect Absorption Based on One-Dimension Embedded Aluminum Grating. Plasmonics 14, 999–1004 (2019). https://doi.org/10.1007/s11468-018-0886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0886-0

Keywords

Navigation