Skip to main content
Log in

A Low-Cost Stable SERS Substrate Based on Modified Silicon Nanowires

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we report fabrication of a simple, stable, low-cost, and easy-to-fabricate substrate for surface enhanced Raman spectroscopy (SERS) applications. Silicon nanowires are one of the widely used nanostructures in different fields of nanotechnology. Through creating and varying the gap between nanowires and reducing their filling ratio and tapering, silicon nanowires are converted to applicable SERS substrates. Furthermore, the effects of annealing and post-KOH etching on these silver-coated silicon nanowire substrates are examined. It is shown that the applied processes remarkably enhance the captured Raman signal. For samples etched with KOH method, an optimized etching time at which the Raman signal reaches its maximum value is obtained as well. Finally, an ultra-high enhancement in the Raman signal is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McCreery RL (2005) Raman spectroscopy for chemical analysis, vol 225. Wiley

  2. Kneipp K, Moskovits M, Kneipp H (2007) Surface-enhanced Raman scattering. Phys Today 60(11):40–46

    Article  CAS  Google Scholar 

  3. Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803

    Article  CAS  Google Scholar 

  4. Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69(9):4159–4161

    Article  CAS  Google Scholar 

  5. Hexter RM, Albrecht M-G (1979) Metal surface Raman spectroscopy: theory. Spectrochim Acta A Mol Spectrosc 35(3):233–251

    Article  Google Scholar 

  6. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  7. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366

    Article  CAS  PubMed  Google Scholar 

  8. Pieczonka NPW, Aroca RF (2005) Inherent complexities of trace detection by surface-enhanced Raman scattering. ChemPhysChem 6(12):2473–2484

    Article  CAS  PubMed  Google Scholar 

  9. Aroca RF, Alvarez-Puebla RA, Pieczonka N, Sanchez-Cortez S, Garcia-Ramos JV (2005) Surface-enhanced Raman scattering on colloidal nanostructures. Adv Colloid Interf Sci 116(1–3):45–61

    Article  CAS  Google Scholar 

  10. Šimáková P, Kočišová E, Procházka M (2013) Sensitive Raman spectroscopy of lipids based on drop deposition using DCDR and SERS. J Raman Spectrosc 44(11):1479–1482

    Article  CAS  Google Scholar 

  11. Hu P, Zheng X, Zong C, Li M, Zhang L, Li W et al (2014) Drop-coating deposition and surface-enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears. J Raman Spectrosc 45(7):565–573

    Article  CAS  Google Scholar 

  12. Wang Y, Zhu L, Zhang Y, Yang M (2010) Silicon nanotips formed by self-assembled Au nanoparticle mask. J Nanopart Res 12(5):1821–1828

    Article  CAS  Google Scholar 

  13. Park S-H, Im J-H, Im J-W, Chun B-H, Kim J-H (1999) Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces. Microchem J 63(1):71–91

    Article  CAS  Google Scholar 

  14. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. ACS Publications

  15. Zhang X, Yonzon CR, Young MA, Stuart DA, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography. In: IEE Proceedings-Nanobiotechnology. IET, pp 195–206

  16. Yue W, Wang Z, Yang Y, Chen L, Syed A, Wong K, Wang X (2012) Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. J Micromech Microeng 22(12):125007

    Article  CAS  Google Scholar 

  17. Abu Hatab NA, Oran JM, Sepaniak MJ (2008) Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2(2):377–385

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y-J, Chu HY, Zhao Y-P (2010) Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations. J Phys Chem C 114(18):8176–8183

    Article  CAS  Google Scholar 

  19. He Y, Fu J, Zhao Y (2014) Oblique angle deposition and its applications in plasmonics. Front Phys 9(1):47–59

    Article  Google Scholar 

  20. Peng C-T, Lin J-C, Lin C-T, Chiang K-N (2005) Performance and package effect of a novel piezoresistive pressure sensor fabricated by front-side etching technology. Sensors Actuators A Phys 119(1):28–37

    Article  CAS  Google Scholar 

  21. Sivakov V, Andrä G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen SH (2009) Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 9(4):1549–1554

    Article  CAS  PubMed  Google Scholar 

  22. Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167

    Article  CAS  PubMed  Google Scholar 

  23. Peng K, Jie J, Zhang W, Lee S-T (2008) Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett 93(3):33105

    Article  CAS  Google Scholar 

  24. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35

    Article  CAS  PubMed  Google Scholar 

  25. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292

    Article  CAS  PubMed  Google Scholar 

  26. Fischer KE, Alemán BJ, Tao SL, Daniels RH, Li EM, Bunger MD et al (2009) Biomimetic nanowire coatings for next generation adhesive drug delivery systems. Nano Lett 9(2):716–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang M-L, Yi C-Q, Fan X, Peng K-Q, Wong N-B, Yang M-S, Zhang RQ, Lee ST (2008) A surface-enhanced Raman spectroscopy substrate for highly sensitive label-free immunoassay. Appl Phys Lett 92(4):43116

    Article  CAS  Google Scholar 

  28. Yi C, Li C-W, Fu H, Zhang M, Qi S, Wong N-B, Lee ST, Yang M (2010) Patterned growth of vertically aligned silicon nanowire arrays for label-free DNA detection using surface-enhanced Raman spectroscopy. Anal Bioanal Chem 397(7):3143–3150

    Article  CAS  PubMed  Google Scholar 

  29. Hung Y-J, Lee S-L, Wu K-C, Tai Y, Pan Y-T (2011) Antireflective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes. Opt Express 19(17):15792–15802

    Article  CAS  PubMed  Google Scholar 

  30. Jung J-Y, Guo Z, Jee S-W, Um H-D, Park K-T, Lee J-H (2010) A strong antireflective solar cell prepared by tapering silicon nanowires. Opt Express 18(103):A286–A292

    Article  CAS  PubMed  Google Scholar 

  31. Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J (2005) Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew Chemie Int Ed 44(18):2737–2742

    Article  CAS  Google Scholar 

  32. Lajvardi M, Eshghi H, Ghazi ME, Izadifard M, Goodarzi A (2015) Structural and optical properties of silicon nanowires synthesized by Ag-assisted chemical etching. Mater Sci Semicond Process 40:556–563

    Article  CAS  Google Scholar 

  33. Geyer N, Fuhrmann B, Leipner HS, Werner P (2013) Ag-mediated charge transport during metal-assisted chemical etching of silicon nanowires. ACS Appl Mater Interfaces 5(10):4302–4308

    Article  CAS  PubMed  Google Scholar 

  34. Geyer N, Fuhrmann B, Huang Z, de Boor J, Leipner HS, Werner P (2012) Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts. J Phys Chem C 116(24):13446–13451

    Article  CAS  Google Scholar 

  35. Huang Z, Geyer N, Werner P, De Boor J, Gösele U (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23(2):285–308

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Rouhbakhsh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhbakhsh, H., Farkhari, N., Ahmadi-kandjani, S. et al. A Low-Cost Stable SERS Substrate Based on Modified Silicon Nanowires. Plasmonics 14, 869–874 (2019). https://doi.org/10.1007/s11468-018-0868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0868-2

Keywords

Navigation