Skip to main content
Log in

Surface Plasmon-Assisted Modification of χ(3) Non-Linearity in a Three-Level Active Medium Near Gold Grating

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This study presents a theoretical calculation for the surface plasmon polariton near-field assisted modification of non-linearities of a three-level quantum system placed on top of one-dimensional gold grating structure. The strong coupling of intense electromagnetic near-field, tightly confined at the interface of dielectric-metal grating, can dramatically influence the higher orders of non-linearity of a quantum system placed in the vicinity of grating. We have obtained a full solution of the three-level quantum system problem in our previous study (Gupta et al. J Opt 18(10):105001, 2016). It can, however, be advantageous to focus on the effects of specific orders of the polarizabilities, particularly at lower intensities of light. It then becomes easier to identify the various effects of the non-linearities on a light probe. In this work, I focus on the χ(3) non-linearity of a given active medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gupta P, Ramakrishna SA, Wanare H (2016) Strong coupling of surface plasmon resonances to molecules on a gold grating. J Opt 18(10):105001

    Article  CAS  Google Scholar 

  2. Tame MS, McEnery KR, Ozdemir K, Lee J, Maier SA, Kim MS (2013) Nat Phys 9:329–340

    Article  CAS  Google Scholar 

  3. Burresi M, Van Oosten D, Kampfrath T, Schoenmaker H, Heideman R, Leinse A, Kuipers L (2009) Probing the magnetic field of light at optical frequencies. Science 326(5952):550–553

    Article  CAS  PubMed  Google Scholar 

  4. Shadrivov IV, Kozyrev AB, van der Weide DW, Kivshar YS (2008) Nonlinear magnetic metamaterials. Opt Express 16(25):20266–20271

    Article  CAS  PubMed  Google Scholar 

  5. Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J, Li D, Yu Y (2017) Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Opt Express 25(4):3675–3681

    Article  PubMed  Google Scholar 

  6. Chen J, Zha T, Zhang T, Tang C, Yu Y, Liu Y, Zhang L (2017) Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials. J Light Technol 35(1):71–74

    Article  Google Scholar 

  7. Chen J, Zhang T, Tang C, Mao P, Liu Y, Yu Y, Liu Z (2016) Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes. IEEE Photon Technol Lett 28(14):1529–1532

    Article  CAS  Google Scholar 

  8. Chen J, Tang C, Mao P, Peng C, Gao D, Yu Y, Wang Q, Zhang L (2016) Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials. IEEE Photon J 8(1):1–7

    Google Scholar 

  9. Ridolfo A, Di Stefano O, Fina N, Saija R, Savasta S (2010) Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the fano effect on photon statistics. Phys Rev Lett 105(26):263601

    Article  CAS  PubMed  Google Scholar 

  10. Tan SF, Wu L, Yang JKW, Bai P, Bosman M, Nijhuis CA (2014) Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343(6178):1496–1499

    Article  CAS  PubMed  Google Scholar 

  11. Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94 (9):1481–1486

    Article  CAS  Google Scholar 

  12. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9(3):193

    Article  CAS  PubMed  Google Scholar 

  13. Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E, Ritchie D (2002) Low-threshold terahertz quantum-cascade lasers. Appl Phys Lett 81(8):1381–1383

    Article  CAS  Google Scholar 

  14. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5 (5):829–834

    Article  CAS  PubMed  Google Scholar 

  15. Manjavacas A, García De Abajo FJ, Nordlander P (2011) Quantum plexcitonics: strongly interacting plasmons and excitons. Nano Lett 11(6):2318–2323

    Article  CAS  PubMed  Google Scholar 

  16. Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 90(2):027402

    Article  PubMed  CAS  Google Scholar 

  17. Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photon 6(11):737–748

    Article  CAS  Google Scholar 

  18. Cox JD, García De Abajo FJ (2014) Electrically tunable nonlinear plasmonics in graphene nanoislands. Nat Commun 5:5725

    Article  CAS  PubMed  Google Scholar 

  19. Kroo N, Varro Sa, Farkas G, Dombi P, Oszetzky D, Nagy A, Czitrovszky A (2008) Nonlinear plasmonics. J Mod Opt 55(19-20):3203–3210

    Article  CAS  Google Scholar 

  20. Lu Z, Zhu K-D (2008) Enhancing kerr nonlinearity of a strongly coupled exciton–plasmon in hybrid nanocrystal molecules. J Phys B: Atom, Mol Opt Phys 41(18):185503

    Article  CAS  Google Scholar 

  21. Yan J-Y, Zhang W, Duan S, Zhao X-G (2008) Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots. J Appl Phys 103(10):104314

    Article  CAS  Google Scholar 

  22. Esteban R, Laroche M, Greffet J-J (2009) Influence of metallic nanoparticles on upconversion processes. J Appl Phys 105(3):033107

    Article  CAS  Google Scholar 

  23. Pu Y, Grange R, Hsieh C-L, Psaltis D (2010) Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett 104(20):207402

    Article  PubMed  CAS  Google Scholar 

  24. Yannopapas V (2010) Enhancement of nonlinear susceptibilities near plasmonic metamaterials. Opt Commun 283(8):1647–1649

    Article  CAS  Google Scholar 

  25. Thanopulos I, Paspalakis E, Yannopapas V (2012) Plasmon-induced enhancement of nonlinear optical rectification in organic materials. Phys Rev B 85(3):035111

    Article  CAS  Google Scholar 

  26. Li J-B, Kim N-C, Cheng M-T, Li Z, Hao Z-H, Wang Q-Q (2012) Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems. Opt Express 20(2):1856–1861

    Article  PubMed  Google Scholar 

  27. Singh MR (2013) Enhancement of the second-harmonic generation in a quantum dot–metallic nanoparticle hybrid system. Nanotechnology 24(12):125701

    Article  PubMed  CAS  Google Scholar 

  28. Cox JD, Singh MR, Von Bilderling C, Bragas AV (2013) A nonlinear switching mechanism in quantum dot and metallic nanoparticle hybrid systems. Adv Opt Mater 1(6):460–467

    Article  Google Scholar 

  29. Liu XN, Yao DZ, Zhou HM, Chen F, Xiong GG (2013) Third-order nonlinear optical response in quantum dot–metal nanoparticle hybrid structures. Appl Phys B 113(4):603–610

    Article  CAS  Google Scholar 

  30. Paspalakis E, Evangelou S, Kosionis SG, Terzis AF (2014) Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system. J Appl Phys 115(8):083106

    Article  CAS  Google Scholar 

  31. Hsiao VKS, Zheng YB, Juluri BK, Huang TJ (2008) Light-driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals. Adv Mater 20(18):3528–3532

    Article  CAS  Google Scholar 

  32. Tao J, Wang QJ, Hu B, Zhang Y (2012) An all-optical plasmonic limiter based on a nonlinear slow light waveguide. Nanotechnology 23(44):444014

    Article  PubMed  CAS  Google Scholar 

  33. Mohapatra S, Mishra YK, Warrier AM, Philip R, Sahoo S, Arora AK, Avasthi DK (2012) Plasmonic, low-frequency raman, and nonlinear optical-limiting studies in copper–silica nanocomposites. Plasmonics 7(1):25–31

    Article  CAS  Google Scholar 

  34. Nikolov ID (2005) Nanofocusing devices development and nano-medicine. Curr Nanosci 1(3):211–224

    Article  Google Scholar 

  35. Kou Y, Ye F, Chen X (2012) Surface plasmonic lattice solitons. Opt Lett 37(18):3822–3824

    Article  PubMed  Google Scholar 

  36. Ganesh N, Block ID, Mathias PC, Zhang W, Chow E, Malyarchuk V, Cunningham BT (2008) Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors. Opt Express 16 (26):21626–21640

    Article  CAS  PubMed  Google Scholar 

  37. Liebermann T, Knoll W (2000) Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf A Physicochem Eng Asp 171(1):115–130

    Article  CAS  Google Scholar 

  38. Fort E, Grésillon S (2007) Surface enhanced fluorescence. J Phys D: Appl Phys 41(1):013001

    Article  CAS  Google Scholar 

  39. Mandal P, Gupta P, Nandi A, Ramakrishna SA (2012) Surface enhanced fluorescence and imaging with plasmon near-fields in gold corrugated gratings. J Nanophoton 6(1):063527–063527

    Article  CAS  Google Scholar 

  40. Campion A, Kambhampati P (1998) Surface-enhanced raman scattering. Chem Soc Rev 27(4):241–250

    Article  CAS  Google Scholar 

  41. Mandal P, Nandi A, Ramakrishna SA (2012) Propagating surface plasmon resonances in two-dimensional patterned gold-grating templates and surface enhanced raman scattering. J Appl Phys 112(4):044314

    Article  CAS  Google Scholar 

  42. Zheludev NI, Prosvirnin SL, Papasimakis N, Fedotov VA (2008) Lasing spaser. Nat Photon 2 (6):351–354

    Article  CAS  Google Scholar 

  43. Stockman MI (2010) The spaser as a nanoscale quantum generator and ultrafast amplifier. J Opt 12(2):024004

    Article  CAS  Google Scholar 

  44. Plum E, Fedotov VA, Kuo P, Tsai DP, Zheludev NI (2009) Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt Express 17(10):8548–8551

    Article  CAS  PubMed  Google Scholar 

  45. Bellessa J, Bonnand C, Plenet JC, Mugnier J (2004) Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys Rev Lett 93(3):036404

    Article  CAS  PubMed  Google Scholar 

  46. Törmä P, Barnes WL (2014) Strong coupling between surface plasmon polaritons and emitters: a review. Rep Progress Phys 78(1):013901

    Article  Google Scholar 

  47. González-Tudela A, Huidobro PA, Martín-Moreno L, Tejedor C, García-Vidal FJ (2013) Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys Rev Lett 110(12):126801

    Article  PubMed  CAS  Google Scholar 

  48. Asadpour SH, Sahrai M, Sadighi-Bonabi R, Soltani A, Mahrami H (2011) Enhancement of kerr nonlinearity at long wavelength in a quantum dot nanostructure. Phys E: Low-dimensional Syst Nanostruct 43 (10):1759–1762

    Article  CAS  Google Scholar 

  49. Leegwater JA, Mukamel S (1992) Exciton-scattering mechanism for enhanced nonlinear response of molecular nanostructures. Phys Rev A 46(1):452

    Article  CAS  PubMed  Google Scholar 

  50. Ganeev RA, Ryasnyansky AI, Kamalov Sh R, Kodirov MK, Usmanov T (2001) Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals. J Phys D Appl Phys 34(11):1602

    Article  CAS  Google Scholar 

  51. Renger J, Quidant R, Van Hulst N, Novotny L (2010) Surface-enhanced nonlinear four-wave mixing. Phys Rev Lett 104(4):046803

    Article  PubMed  CAS  Google Scholar 

  52. Gehr RJ, Boyd RW (1996) Optical properties of nanostructured optical materials. Chem Mater 8 (8):1807–1819

    Article  CAS  Google Scholar 

  53. Yu Z, Grady NK, Ayala-Orozco C, Halas NJ (2011) Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett 11(12):5519–5523

    Article  CAS  Google Scholar 

  54. Van Nieuwstadt JAH, Sandtke M, Harmsen RH, Segerink FB, Prangsma JC, Enoch S, Kuipers L (2006) Strong modification of the nonlinear optical response of metallic subwavelength hole arrays. Phys Rev Lett 97(14):146102

    Article  PubMed  CAS  Google Scholar 

  55. Niu Y, Gong S (2006) Enhancing kerr nonlinearity via spontaneously generated coherence. Phys Rev A 73 (5):053811

    Article  CAS  Google Scholar 

  56. Asadpour SH, Sahrai M, Soltani A, Hamedi HR (2012) Enhanced kerr nonlinearity via quantum interference from spontaneous emission. Phys Lett A 376(3):147–152

    Article  CAS  Google Scholar 

  57. Hong-Ju G, Yue-Ping N, Li-Chun W, Shi-Qi J, Shang-Qing G (2008) Trichromatic manipulation of kerr nonlinearity in a three-level a atomic system. Chin Phys Lett 25(10):3656

    Article  Google Scholar 

  58. Ren J, Chen H, Gu Y, Zhao D, Zhou H, Zhang J, Gong Q (2016) Plasmon-enhanced kerr nonlinearity via subwavelength-confined anisotropic purcell factors. Nanotechnology 27(42):425205

    Article  PubMed  CAS  Google Scholar 

  59. Montgomery JM, Imre A, Welp U, Vlasko-Vlasov V, Gray SK (2009) Sers enhancements via periodic arrays of gold nanoparticles on silver film structures. Opt Express 17(10):8669–8675

    Article  CAS  PubMed  Google Scholar 

  60. Weber WH, Ford GW (1981) Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation. Opt Lett 6(3):122–124

    Article  CAS  PubMed  Google Scholar 

  61. Gupta P (2018) Controlling level splitting by strong coupling of surface plasmon resonances with rhodamine-6g on a gold grating. Plasmonics:1–11

  62. Boyd RW (2003) Nonlinear optics. Academic press, Cambridge

    Google Scholar 

  63. Evangelou S, Yannopapas V, Paspalakis E (2014) Modification of kerr nonlinearity in a four-level quantum system near a plasmonic nanostructure. J Mod Opt 61(18):1458–1464

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prince Gupta acknowledges Professor S. Anantha Ramakrishna and Professor H. Wanare for their insightful comments and discussion and for providing the facilities to perform the calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prince Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P. Surface Plasmon-Assisted Modification of χ(3) Non-Linearity in a Three-Level Active Medium Near Gold Grating. Plasmonics 14, 425–433 (2019). https://doi.org/10.1007/s11468-018-0820-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0820-5

Keywords

Navigation