Skip to main content
Log in

High-Quantum Efficiency of the Plasmonic Photodetectors-Based on Coupling Between Ag Nanoparticles and Ag Nanograting Electrodes

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The plasmonic effects due to the coupling of silver spherical nanoparticles with silver nanograting electrodes on active medium of the photo detector are investigated. Calculations show that the coupling of nanoparticles and nanograting electrodes at the surface of active medium lead to reflection wave into the active medium, and electrodes can participate in the absorption and quantum efficiency. Calculations show that the addition of nanograting electrodes to the structure can lead to increase the absorption coefficient up to 120% respect to the plasmonic structure containing only nanoparticles and about 4.5 times that of conventional (metal-semiconductor -metal ) MSM photo detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Heck MJR, Jared FB, Michael LD et al (2013) Hybrid silicon photonic integrated circuit technology. IEEE Journal of Selected Topics in Quantum Electronics 19:6100117–6100117

    Article  CAS  Google Scholar 

  2. Soole JBD, Schumacher H (1991) InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications. IEEE J Quantum Electron 27:737–752

    Article  CAS  Google Scholar 

  3. Liu MY, Chou SY (1995) Internal emission metal-semiconductor-metal photodetectors on Si and GaAs for 1.3 μm detection. Appl Phys Lett 66(20):2673–2676

    Article  CAS  Google Scholar 

  4. Ito M, Wada O (1986) Low dark current GaAs metal-semiconductor- metal (MSM) photodiodes using WSi, contacts. IEEE J Quantum Electron 22:1073–1077

    Article  Google Scholar 

  5. Chou SY, Liu MY (1992) Nanoscaletera-hertz Metal-Semiconductor-Metal Photodetectors. IEEE J Quantum Electron 28(10):2358–2368

    Article  CAS  Google Scholar 

  6. Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19(22):22029–22106

    Article  PubMed  Google Scholar 

  7. Sarid D, Challener WA (2010) Modern introduction to surface plasmons: theory, Mathematica modeling, and applications. Cambridge University Press

  8. Rycenga M, Claire MC, Zeng J, Li W, Christine MH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu X, Swihart MT (2014) Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev 43:3908–3920

    Article  CAS  PubMed  Google Scholar 

  10. Zhou Sh, Pi Xi, Ni Z, Ding Y, Jiang Y, Jin Ch, Delerue Ch, Yang D, Nozaki T (2015) Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals. ACS Nano 9:378–386

    Article  CAS  PubMed  Google Scholar 

  11. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, vanDuyne RP (2008) Biosensing with plasmonic nanosensors. NatureMaterials 7(6):442–453

    Article  CAS  Google Scholar 

  12. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. Appl Phys 101:093105

    Article  CAS  Google Scholar 

  13. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101(9):093105–1-8

    Article  CAS  Google Scholar 

  14. Stuart HR, Hall DG (1998) Island size effects in nanoparticle enhanced detectors. Appl Phys Lett 73(26):3815–7

    Article  CAS  Google Scholar 

  15. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86(6):063106–1-3

    Article  CAS  Google Scholar 

  16. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461(7264):629–632

    Article  CAS  Google Scholar 

  17. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86(6):063106–1-3

    Article  CAS  Google Scholar 

  18. Yu ET, Derkacs D, Lim SH, Matheu P, Schaadt DM (2008) Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices. Proceedings of the SPIE 7033:70331V

    Article  CAS  Google Scholar 

  19. Sundararajan SP, Grady NK, Mirin N, Halas NJ (2008) Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode. Nano Lett 8(2):624–630

    Article  CAS  PubMed  Google Scholar 

  20. Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93(19):191113

    Article  CAS  Google Scholar 

  21. Tan CL, Lysak VV, Das N, Karaar A, Alameh K, Lee YT (2010) Absorption enhancement of MSM photo-detector structure with a plasmonic double grating structure. In: 10th IEEE international conference on nanotechnology. IEEE NANO, vol 2010, pp 849–853

  22. Das N, Karar A, Tan CL, Alameh K, Lee YT (2011) Impact of nanograting phase-shift on light absorption enhancement in plasmonics-based metal-semiconductor-metal photodetectors. Advances in Optical Technologies 2011:504530

    Article  Google Scholar 

  23. Tan CL, Karar A, Alameh K, Lee YT (2013) Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles. Opt Express 21(2):1713–1725

    Article  CAS  PubMed  Google Scholar 

  24. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media

  25. Collin S, Pardo F, Teissier R, Pelourad J (2004) Efficient light absorption in metal-semiconductor-metal nanostructures. Appl Phys Lett 85(2):194–196

    Article  CAS  Google Scholar 

  26. Yu Z, Veronis G, Fan S (2006) Design of midinfraredphotodetectors enhanced by surface plasmons on grating structures. Appl Phys Lett 89(15):151116

    Article  CAS  Google Scholar 

  27. Hetterich J, Bstian G, Gippius N, Tikhodeev S, von Plessen G (2007) Optimized Design of Plasmonic MSM Photodetector. IEEE J Quantum Electron 43(10):855–859

    Article  CAS  Google Scholar 

  28. Tan CL, Lysk VV, Alameh K, Lee YT (2010) Absorption enhancement of 980 nm MSM photodetector with plasmonic grating structure. Opt Commun 283:1763–1767

    Article  CAS  Google Scholar 

  29. Yee K (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic mediam. IEEE Trans Antennas Propag 14:302–307

    Article  Google Scholar 

  30. Kunz KS, Luebbers RJ (1993) The finite difference time domain method for electromagnetics. CRC Press, Boca Raton

    Google Scholar 

  31. Gai H, Wang J, Tian Q (2007) Modified Debye model parameters of metals applicable for broadband calculations. Appl Opt 46 12:2229–2233

    Article  Google Scholar 

  32. Kreibig U (1995) Optical Properties of Metal Clusters. Springer, Berlin

    Book  Google Scholar 

  33. Coronado EA, Schatz GC (2003) Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach. J Chem Phys 119:3926–3934

    Article  CAS  Google Scholar 

  34. Shackleford JA, Grote R, Currie M, Spanier JE, Nabet B (2009) Integrated plasmonic lens photodetector. Appl Phys Lett 94:083501, 13

    Article  CAS  Google Scholar 

  35. Mousavi SS, Stohr A, Berini P (2014) Plasmonic photodetector with terahertz electrical bandwidth. Appl Phys Lett 104:143112

    Article  CAS  Google Scholar 

  36. Jee SW, Zhou K, Kim DW, Lee JH (2014) A silicon nanowire photodetector using Au plasmonic nanoantennas. Nano Convergence 1(1):29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahari, A., Salianeh, M.G. High-Quantum Efficiency of the Plasmonic Photodetectors-Based on Coupling Between Ag Nanoparticles and Ag Nanograting Electrodes. Plasmonics 14, 415–423 (2019). https://doi.org/10.1007/s11468-018-0819-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0819-y

Keywords

Navigation