Wet-Chemical Etching: a Novel Nanofabrication Route to Prepare Broadband Random Plasmonic Metasurfaces


Broadband optical metasurfaces are gaining enormous attention owing to their potential applications in optoelectronic devices, sensors, and flat optics. Here, we demonstrate for the first time a single-step, novel wet-chemical etching-based nanofabrication method to produce broadband random plasmonic metasurfaces (RPMS). The nanofabrication method is inexpensive, simple, versatile, and compatible with semiconductor processing technologies. The RPMS is made of a single-layer optically thick Ag thin film nanostructured with random nanoholes and nanocavities. The building block of the RPMS is a multi-resonant meta-cell composed of disordered nanoholes with variety of sizes, shapes, and aspect ratios. The composition of the multi-resonant meta-cell can be modified by varying the duration of immersion (DoI) of the Ag thin films in the etchant solution. The RPMS exhibits broadband extraordinary transmission in the 550–800 nm wavelength range with an efficiency of transmission of 2.3. Broadband absorption of light is observed in the entire visible region; incident light is strongly absorbed (~70%) in the nanocavities via localized surface plasmons (LSPs) in the 400–550 nm wavelength range. Further, 40–50% of the light is absorbed in the metal film via surface plasmon polaritons (SPPs) excited by the multi-resonant meta-cells, elsewhere on the spectrum. The RPMS exhibits Lambertian type scattering with nearly 50% efficiency in the entire visible wavelength range. The RPMS with these broadband optical properties can find useful applications in plasmonic solar cells, surface-enhanced Raman spectroscopy (SERS), thermoplasmonic devices, and plasmoelectric potentials based all-metal optoelectronic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Pors A, Nielsen GM, Eriksen LR, Bozhevolnyi SI (2013) Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 13:829–834

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Zhong J, An N, Yi N, Zhu M, Song Q, Xiao S (2016) Broadband and tunable-focus flat lens with dielectric metasurface. Plasmonics 11:537–541

    Article  CAS  Google Scholar 

  3. 3.

    Pala AR, Butun S, Aydin K, Atwater AH (2016) Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces. Sci Rep 6:1–7

    Article  CAS  Google Scholar 

  4. 4.

    Li W, Ying Y, Qiao X, Li Q, Qiao L, Zheng J, Jiang L, Che S (2016) Plasmonic metasurface for light absorption enhancement in GaAs thin film. Plasmonics 11:1401–1406

    Article  CAS  Google Scholar 

  5. 5.

    Zhang N, Liu K, Liu Z, Song H, Zang X, Ji D, Cheney A, Jiang S, Gan Q (2015) Ultrabroadband metasurface for efficient light trapping and localization: a universal surface-enhanced Raman spectroscopy substrate for “all” excitation wavelengths. Adv Mater Interfaces 2:1500142–1500148

    Article  CAS  Google Scholar 

  6. 6.

    Luo XG (2015) Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58:594201–594218

    Article  CAS  Google Scholar 

  7. 7.

    Yu N, Capasso F (2015) Optical metasurfaces and prospect of their applications including fiber optics. J Lightwave Technol 33:2344–2358

    Article  Google Scholar 

  8. 8.

    Garcia-Vidal FJ, Martin-Moreno L, Pendry JB (2005) Surfaces with holes in them: new plasmonic metamaterials. J Opt A Pure Appl Opt 7:S97–S101

    Article  Google Scholar 

  9. 9.

    Meinzer N, Barnes LW, Hooper RI (2014) Plasmonic meta-atoms and metasurfaces. Nat Photonics 8:889–898

    Article  CAS  Google Scholar 

  10. 10.

    Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Kildishev VA, Boltasseva A, Shalaev MV (2013) Planar photonics with metasurfaces. Science 339:1232009–1232014

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13:139–150

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Najafabadi FA, Pakizeh T (2018) Optical circular conversion dichroism via heterogeneous planar nanoplasmonic metasurface. Plasmonics. https://doi.org/10.1007/s11468-017-0684-0

  14. 14.

    Hedayati KM, Elbahri M (2017) Review of metasurface plasmonic structural color. Plasmonics 12:1463–1479

    Article  Google Scholar 

  15. 15.

    Marcellis DA, Palange E, Janneh M, Rizza C, Giattoni A, Mengali S (2017) Design optimization of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing. Plasmonics 12:293–298

    Article  CAS  Google Scholar 

  16. 16.

    Tordera D, Zhao D, Volkov VA, Crispin X, Jonsson PM (2017) Thermoplasmonic semitransparent nanohole electrodes. Nano Lett 17:3145–3151

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Sheldon TM, van de Groep J, Brown MA, Polaman A, Atwater AH (2014) Plasmonic electric potentials in metal nanostructures. Science 346:828–831

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Vynck K, Burresi M, Riboli F, Wiersma S (2012) Photon management in two-dimensional disordered media. Nat Mater 11:1017–1022

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Atwater AH, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Ye D, Wang Z, Wang Z, Kuiwen X, Zhang B, Huangfu J (2012) Towards experimental perfectly matched layers with ultra-thin metamaterial surfaces. IEEE Trans Antennas Propag 60(11):5164–5172

    Article  Google Scholar 

  22. 22.

    Zhang B, Hendrickson J, Guo J (2013) Multispectral near-perfect metamaterial absorber using spatially multiplexed plasmon resonance metal square structures. J Opt Soc Am B 30:656–662

    Article  Google Scholar 

  23. 23.

    Jang M, Horie Y, Shibukawa A, Brake J, Liu Y, Kamali MS, Arbabi A, Ruan H, Faraon A, Yang C (2018) Wavefront shaping with disorder-engineered metasurfaces. Nat Photonics 12:84–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Bertolotti J (2018) Designing disorder. Nat Photonics 12:59–67

    Article  CAS  Google Scholar 

  25. 25.

    Dupre M, Hsu L, Kante B (2018) On the design of random metasurface devices. arXiv:1802.01202

  26. 26.

    Reilly TH, Tenent RC, Barnes MT, Rowlen KL, van de Lagemaat J (2010) Controlling the optical properties of disordered nanohole silver films. ACS Nano 4:615–624

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Petoukhoff CE, O’Carroll DM (2015) Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces. Nat Commun 6:1–13

    Article  CAS  Google Scholar 

  28. 28.

    Akselrod MG, Huang J, Hoang BT, Bowen TP, Su L, Smith RD, Mikkelsen HM (2015) Large-area metasurface perfect absorbers from visible to near-infrared. Adv Mater 27:8028–8034

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Piragash Kumar RM, Venkatesh A, Moorthy VHS (2016) Process of formation of disordered nano-holes in optically thick silver films. Indian patent. Filing no. 201641037059

  30. 30.

    Ghodssi R, Lin P (2011) MEMS materials and processes handbook. In: Burns WD (ed) MEMS wet-etch processes and procedures. Springer, New York, pp 457–665

    Google Scholar 

  31. 31.

    Sannomiya T, Scholder O, Jefimovs K, Hafner C, Dahlin AB (2011) Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications. Small 7:1653–1663

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Przybilla F, Degiron A, Laluet J-Y, Genet C, Ebbesen TW (2006) Optical transmission in perforated noble and transition metal films. J Opt A Pure Appl Opt 8:458–463

    Article  CAS  Google Scholar 

  33. 33.

    Koerkamp KJK, Enoch S, Segerink BF, van Hulst FN, Kuipers L (2004) Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys Rev Lett 92:183901–183904

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Teperik TV, Garcia De Abajo FJ, Borisov AG, Abdelsalam M, Bartlett PN, Sugawara Y, Baumberg JJ (2018) Omnidirectional absorption in nanostructured metal surfaces. Nat Photonics 2:299–301

    Article  Google Scholar 

  35. 35.

    Perney NMB, Garcia de Abajo FJ, Baumberg JJ, Tang A, Netti MC, Charlton MDB, Zoorob ME (2007) Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering. Phys Rev B 76:035426–035430

    Article  CAS  Google Scholar 

  36. 36.

    Zongfu Y, Rama A, Fan S (2010) Fundamental limit of nanophotonic light trapping in solar cells. Proc Natl Acad Sci U S A 107:17491–17496

    Article  Google Scholar 

Download references


The authors would like to acknowledge the support of Dr. M. G. Sreenivasan (Technical Manager, Hind High Vacuum Company Pvt. Ltd. India) in performing the optical spectroscopy measurements for the present study. Dr. V. H. S wants to acknowledge Dr. R. Bhattacharya, Honorary Adjunct Professor, IIEST, Shibpur, India for introducing him to the exciting field of plasmonics.


The authors would like to thank the Department of Science and Technology (DST), India (Grant no: DST/TM/SERI/2K10/63(G)) and Department of Biotechnology (DBT), India (Grant no: BT/PR12874/NNT/28/452/2009)) for financially supporting the research work.

Author information



Corresponding author

Correspondence to Moorthy V. H. S..

Electronic supplementary material

Method.mp4: A video showing the method of fabrication of nanostructures on optically thick Ag thin films. The Ag thin film is immersed in the etchant solution and bubbles appear as a result of nanostructuring of the Ag thin film. (MP4 50,287 kb)


SI.pdf: a file containing additional information as referenced to in the main text. (DOCX 7205 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

R. M., P., A., V. & V. H. S., M. Wet-Chemical Etching: a Novel Nanofabrication Route to Prepare Broadband Random Plasmonic Metasurfaces. Plasmonics 14, 365–374 (2019). https://doi.org/10.1007/s11468-018-0813-4

Download citation


  • Wet-chemical etching
  • Random plasmonic metasurfaces
  • Optical metasurfaces
  • Broadband absorption
  • Scattering and plasmonic solar cells