Skip to main content
Log in

Ultra-stable D-shaped Optical Fiber Refractive Index Sensor with Graphene-Gold Deposited Platform

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate a high sensitivity refractive index (RI) sensor with D-shaped structure covered with gold and graphene film. Specifically, the effect of structural parameters on the stability of fiber sensor is analyzed. In our research, it have been found that the sensor we proposed is not very sensitive to the change of structure parameters on the premise of ensuring the sensing precision. This advantage means that the requirements for machining errors are reduced. Further probing shows that the proposed sensor shows a maximum wavelength interrogation sensitivity of 4391nm/RIU with the dynamic refractive index range from 1.33 to 1.39 and a maximum amplitude sensitivity of 1139RIU− 1 with the analyte RI = 1.38 in the visible region. The corresponding resolution are 2.28 × 10− 5 and 8.78 × 10− 6 based on the methods of wavelength interrogation and amplitude-(or phase-) based method. These characteristics of compact sensing architectures, simple to fabricate, and high sensitivity open the possibility of using this type of sensor in biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. An G, Li S, Yan X, Zhang X, Yuan Z, Zhang Y (2016) High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber. JOSA B 33(7):1330–1334

    Article  Google Scholar 

  2. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94(3):031,901

    Article  CAS  Google Scholar 

  3. Chen D, Hu G, Chen L (2011) Dual-core photonic crystal fiber for hydrostatic pressure sensing. IEEE Photon Technol Lett 23(24):1851–1853

    Article  Google Scholar 

  4. Gauvreau B, Hassani A, Fehri MF, Kabashin A, Skorobogatiy M (2007) Photonic bandgap fiber-based surface plasmon resonance sensors. Opt Express 15(18):11,413–11,426

    Article  CAS  Google Scholar 

  5. Hakomori S, Asai T, Mizuno N (2002) Single-side polishing method for substrate edge, and apparatus therefor. US Patent 6,402,596

  6. Hassani A, Skorobogatiy M (2007) Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J Opt Soc Am B 24(6):1423–1429

    Article  CAS  Google Scholar 

  7. Hassani A, Skorobogatiy M (2009) Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. JOSA B 26(8):1550–1557

    Article  CAS  Google Scholar 

  8. Huang Y, Zhu W, Li Z, Chen G, Chen L, Zhou J, Lin H, Guan J, Fang W, Liu X et al (2018) High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film. Sensors Actuators B Chem 255:57–69

    Article  CAS  Google Scholar 

  9. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A 23(12):2135–2136

    Article  CAS  Google Scholar 

  10. Lu Y, Hao CJ, Wu BQ, Huang XH, Wen WQ, Fu XY, Yao J (2012) Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments. Sensors 12(9):12,016–12,025

    Article  CAS  Google Scholar 

  11. Mak KF, Sfeir MY, Misewich JA, Heinz TF (2010) The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. Proc Natl Acad Sci 107(34):14,999–15,004

    Article  Google Scholar 

  12. Malitson I (1965) Interspecimen comparison of the refractive index of fused silica. Josa 55(10):1205–1209

    Article  CAS  Google Scholar 

  13. May-Arrioja DA, Guzman-Sepulveda JR (2017) Highly sensitive fiber optic refractive index sensor using multicore coupled structures. J Light Technol 35(13):2695–2701

    Article  CAS  Google Scholar 

  14. Nagasaki A, Saitoh K, Koshiba M (2011) Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt Express 19(4):3799–3808

    Article  CAS  PubMed  Google Scholar 

  15. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308

    Article  CAS  PubMed  Google Scholar 

  16. Otupiri R, Akowuah EK, Haxha S, Ademgil H, Abdelmalek F, Aggoun A (2014) A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photon J 6(4):1–11

    Article  CAS  Google Scholar 

  17. Paliwal A, Gaur R, Sharma A, Tomar M, Gupta V (2016) Sensitive optical biosensor based on surface plasmon resonance using zno/au bilayered structure. Optik - Int J Light Electron Opt 127(19):7642–7647

    Article  CAS  Google Scholar 

  18. Patnaik A, Senthilnathan K, Jha R (2015) Graphene-based conducting metal oxide coated d-shaped optical fiber spr sensor. IEEE Photon Technol Lett 27(23):2437–2440

    Article  CAS  Google Scholar 

  19. Rifat AA, Ahmed R, Mahdiraji GA, Adikan FM (2017) Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-ir. IEEE Sensors J 17(9):2776–2783

    Article  CAS  Google Scholar 

  20. Rifat AA, Mahdiraji GA, Ahmed R, Chow DM, Sua Y, Shee Y, Adikan FM (2016) Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photon J 8(1):1–8

    Article  CAS  Google Scholar 

  21. Sharma AK, Jha R, Gupta B (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors J 7(8):1118–1129

    Article  Google Scholar 

  22. Shi F, Peng L, Zhou G, Cang X, Hou Z, Xia C (2015) An elliptical core d-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit. Plasmonics 10(6):1263–1268

    Article  CAS  Google Scholar 

  23. Smith CM, Venkataraman N, Gallagher MT, Müller D, West JA, Borrelli NF, Allan DC, Koch KW (2003) Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424(6949):657

    Article  CAS  PubMed  Google Scholar 

  24. Song B, Li D, Qi W, Elstner M, Fan C, Fang H (2010) Graphene on au (111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. Chem Phys Chem 11(3):585–589

    Article  CAS  PubMed  Google Scholar 

  25. Vial A, Grimault AS, Macías D, Barchiesi D, de La Chapelle ML (2005) Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Physical Review B 71(8):085,416

    Article  CAS  Google Scholar 

  26. Wu L, Chu H, Koh W, Li E (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14,395–14,400

    Article  CAS  Google Scholar 

  27. Wu T, Shao Y, Wang Y, Cao S, Cao W, Zhang F, Liao C, He J, Huang Y, Hou M (2017) Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt Express 25(17):20,313

    Article  CAS  Google Scholar 

  28. Yang X, Lu Y, Wang M, Yao J (2016) Spr sensor based on exposed-core grapefruit fiber with bimetallic structure. IEEE Photon Technol Lett 28(6):649–652

    Article  CAS  Google Scholar 

  29. Ying Y, Si GY, Luan FJ, Xu K, Qi YW, Li HN (2017) Recent research progress of optical fiber sensors based on d-shaped structure. Opt Laser Technol 90:149–157

    Article  Google Scholar 

  30. Zhang Y, Zhou C, Xia L, Yu X, Liu D (2011) Wagon wheel fiber based multichannel plasmonic sensor. Opt Express 19(23):22,863–22,873

    Article  Google Scholar 

  31. Zhang Z, Shi Y, Bian B, Lu J (2008) Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt Express 16(3):1915–1922

    Article  PubMed  Google Scholar 

  32. Zhao D, Chen X, Zhou K, Zhang L, Bennion I, MacPherson WN, Barton JS, Jones JD (2004) Bend sensors with direction recognition based on long-period gratings written in d-shaped fiber. Appl Opt 43(29):5425–5428

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Liaoning Province, China (2014020020), National Natural Science Foundation of China (No. 61504023), Liaoning Province Natural Science Foundation (20170540324), Fundamental Research Funds for the Central Universities under Grants Nos. N130404001 and N150403003, and the Project-sponsored by SRF for ROCS, SEM(47-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, G., Li, S., Cheng, T. et al. Ultra-stable D-shaped Optical Fiber Refractive Index Sensor with Graphene-Gold Deposited Platform. Plasmonics 14, 155–163 (2019). https://doi.org/10.1007/s11468-018-0788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0788-1

Keywords

Navigation