Skip to main content

Advertisement

Log in

Ultrafast Energy Transfer in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Hybrid nanocomposites can offer a wide range of opportunities to control the light-matter interaction and electromagnetic energy flow at the nanoscale, leading to exotic optoelectronic devices. We study theoretically the dipole-dipole interaction in noble metal nanoparticles-graphene nanodisks-quantum dots hybrid systems in the optical region of the electromagnetic spectrum. The quantum dot is assumed to be a three-level atom interacting with ultrashort control and probe pulses in a Λ configuration. The dynamics of the system are studied by numerically solving for the time evolution of the density matrix elements. We investigate the rate of energy exchange between surface plasmon resonances of the graphene nanodisks and excitons of the quantum dots in the presence of metal nanoparticles at steady state and for specific geometrical conditions of the system. Ultrafast population dynamics are obtained with a large energy exchange rate significantly depending on the size of metal nanoparticles. The power transfer can be controlled by varying the center-to-center distances between the components of the system, and their positions with respect to each other. We also find that the rate of energy transfer within the system is governed by the probe field Rabi frequency, enhanced by the dipole-dipole interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442

    Article  CAS  PubMed  Google Scholar 

  2. Rodrigo D, Limaj O, Janner D, Etezadi D, de Abajo FJG, Pruneri V, Altug H (2015) Mid-infrared plasmonic biosensing with graphene. Science 349(6244):165

    Article  CAS  PubMed  Google Scholar 

  3. Zheludev NI (2011) A roadmap for metamaterials. Opt Photonics News 22(3):30

    Article  CAS  Google Scholar 

  4. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331(6015):290

    Article  CAS  PubMed  Google Scholar 

  5. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205

    Article  CAS  PubMed  Google Scholar 

  6. Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM (2012) Broadband light bending with plasmonic nanoantennas. Science 335(6067):427

    Article  CAS  PubMed  Google Scholar 

  7. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130(5):1676

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76(4):046401

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C, Garcia-Vidal FJ (2011) Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys Rev Lett 106(2):020501

    Article  CAS  PubMed  Google Scholar 

  10. Tame MS, McEnery K, Özdemir Ş, Lee J, Maier S, Kim M (2013) Quantum plasmonics. Nat Phys 9(6):329

    Article  CAS  Google Scholar 

  11. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS nano 6(5):3677

    Article  CAS  PubMed  Google Scholar 

  12. Jarrahi M (2015) Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators. IEEE Trans Terahertz Sci Technol 5(3):391

    Article  CAS  Google Scholar 

  13. Li Y, Argyropoulos C (2016) Controlling collective spontaneous emission with plasmonic waveguides. Opt Express 24(23):26696

    Article  CAS  PubMed  Google Scholar 

  14. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685

    Article  CAS  Google Scholar 

  15. Chon JW, Iniewski K (2013) Nanoplasmonics: advanced device applications. CRC Press, Boca Raton

    Book  Google Scholar 

  16. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111(10):3806

    Article  CAS  Google Scholar 

  17. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4(6):795

    Article  CAS  Google Scholar 

  18. Sreeprasad TS, Pradeep T (2013) Noble metal nanoparticles. In: Springer Handbook of Nanomaterials, Springer, pp 303–388

  19. Khurgin JB, Boltasseva A (2012) Reflecting upon the losses in plasmonics and metamaterials. MRS Bull 37(8):768

    Article  CAS  Google Scholar 

  20. Bolotin KI, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351

    Article  CAS  Google Scholar 

  21. Gonçalves PAD, Peres NM (2016) An introduction to graphene plasmonics. World Scientific, Singapore

    Book  Google Scholar 

  22. Guo B, Fang L, Zhang B, Gong JR (2011) Graphene doping: a review. Insciences J 1(2):80

    Article  CAS  Google Scholar 

  23. Ezawa M (2008) Coulomb blockade in graphene nanodisks. Phys Rev B 77(15):155411

    Article  CAS  Google Scholar 

  24. MinovKoppensich F, Chang D, Thongrattanasiri S, de Abajo FG (2011) Graphene plasmonics: a platform for strong light-matter interactions. Opt Photonics News 22(12):36

    Article  Google Scholar 

  25. Manjavacas A, Nordlander P, García de Abajo FJ (2012) Plasmon blockade in nanostructured graphene. ACS nano 6(2):1724

    Article  CAS  PubMed  Google Scholar 

  26. Rast L, Sullivan T, Tewary VK (2013) Stratified graphene/noble metal systems for low-loss plasmonics applications. Phys Rev B 87(4):045428

    Article  CAS  Google Scholar 

  27. Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK, Grigorenko AN, Novoselov KS, Ferrari AC (2010) Surface-enhanced Raman spectroscopy of graphene. ACS nano 4(10):5617

    Article  CAS  PubMed  Google Scholar 

  28. Alonso-González P, Nikitin AY, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A et al (2014) Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344(6190):1369

    Article  CAS  PubMed  Google Scholar 

  29. Heliotis G, Itskos G, Murray R, Dawson MD, Watson IM, Bradley DD (2006) Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer. Adv Mater 18(3):334

    Article  CAS  Google Scholar 

  30. Govorov AO, Bryant GW, Zhang W, Skeini T, Lee J, Kotov NA, Slocik JM, Naik RR (2006) Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Lett 6(5):984

    Article  CAS  Google Scholar 

  31. Govorov AO, Lee J, Kotov NA (2007) Theory of plasmon-enhanced förster energy transfer in optically excited semiconductor and metal nanoparticles. Phys Rev B 76(12):125308

    Article  CAS  Google Scholar 

  32. Komarala VK, Bradley AL, Rakovich YP, Byrne SJ, Gun’ko YK, Rogach AL (2008) Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots. Appl Phys Lett 93(12):123102

    Article  CAS  Google Scholar 

  33. Dombi P (2009) Surface plasmon-enhanced photoemission and electron acceleration with ultrashort laser pulses. Advances in Imaging and Electron Physics 158:1

    Article  Google Scholar 

  34. Kanemitsu Y, Matsuda K (2011) Energy transfer between excitons and plasmons in semiconductor–metal hybrid nanostructures. J Lumin 131(3):510

    Article  CAS  Google Scholar 

  35. Cox JD, Singh MR, Gumbs G, Anton MA, Carreno F (2012) Dipole-dipole interaction between a quantum dot and a graphene nanodisk. Phys Rev B 86(12):125452

    Article  CAS  Google Scholar 

  36. Biehs SA, Agarwal GS (2013) Large enhancement of förster resonance energy transfer on graphene platforms. Appl Phys Lett 103(24):243112

    Article  CAS  Google Scholar 

  37. Carreño F, Antón M, Melle S, Calderón OG, Cabrera-Granado E, Cox J, Singh MR, Egatz-Gómez A (2014) Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses. J Appl Phys 115(6):064304

    Article  CAS  Google Scholar 

  38. Paradisi A, Biscaras J, Shukla A (2015) Space charge induced electrostatic doping of two-dimensional materials: graphene as a case study. Appl Phys Lett 107(14):143103

    Article  CAS  Google Scholar 

  39. Chu W, Duan S, Zhu JL (2007) Three-level structure design and optically controlled current in coupled quantum dots. Appl Phys Lett 90(22):222102

    Article  CAS  Google Scholar 

  40. Hohenester U, Troiani F, Molinari E, Panzarini G, Macchiavello C (2000) Coherent population transfer in coupled semiconductor quantum dots. Appl Phys Lett 77(12):1864

    Article  CAS  Google Scholar 

  41. Singh J, Williams RT (2016) Excitonic and photonic processes in materials. Springer, Singapore

    Google Scholar 

  42. Törmä P, Barnes WL (2014) Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys 78(1):013901

    Article  PubMed  Google Scholar 

  43. Baieva SV, Hakala TK, Toppari JJ (2012) Strong coupling between surface plasmon polaritons and sulforhodamine 101 dye. Nanoscale Res Lett 7(1):191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang H, Wang HY, Toma A, Yano Ta, Chen QD, Xu HL, Sun HB, Proietti Zaccaria R (2016) Dynamics of strong coupling between CdSe quantum dots and surface plasmon polaritons in subwavelength hole array. J Phys Chem Lett 7(22):4648

    Article  CAS  PubMed  Google Scholar 

  45. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  46. Sarid D, Challener W (2010) Modern introduction to surface plasmons: theory, mathematica modeling and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  47. Premaratne M, Stockman MI (2017) Theory and technology of spasers. Adv Opt Photon 9(1):79

    Article  Google Scholar 

  48. Scully MO, Zubairy MS (1997) Quantum optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  49. Christensen T, Wang W, Jauho AP, Wubs M, Mortensen NA (2014) Classical and quantum plasmonics in graphene nanodisks: role of edge states. Phys Rev B 90(24):241414

    Article  CAS  Google Scholar 

  50. Mackowski S, Gurung T, Jackson H, Smith L, Furdyna J, Dobrowolska M (2004) Optical orientation of excitons in CdSe self-assembled quantum dots. arXiv:cond-mat/0411036

  51. Bederson B, Walther H (2001) Advances in atomic, molecular, and optical physics, advances in atomic, molecular, and optical physics, vol 46. Academic Press, Cambridge

    Google Scholar 

  52. Wang JS, Chiu KP, Lin CY, Tsai YH, Yuan CT (2017) Modification of spontaneous emission rates of self-assembled CdSe quantum dots by coupling to hybrid optical nanoantennas. Plasmonics 12(2):433

    Article  CAS  Google Scholar 

  53. Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82(13):5511

    Article  CAS  PubMed  Google Scholar 

  54. Chen Z, Berciaud S, Nuckolls C, Heinz TF, Brus LE (2010) Energy transfer from individual semiconductor nanocrystals to graphene. ACS nano 4(5):2964

    Article  CAS  PubMed  Google Scholar 

  55. Ficek Z, Swain S (2005) Quantum interference and coherence: theory and experiments, vol 100. Springer Science & Business Media, New York

    Google Scholar 

Download references

Funding

This Project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Tohari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tohari, M., Lyras, A. & Alsalhi, M. Ultrafast Energy Transfer in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems. Plasmonics 14, 17–24 (2019). https://doi.org/10.1007/s11468-018-0772-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0772-9

Keywords

Navigation