Skip to main content
Log in

Investigation of Surface Plasmon Resonance in the Rectangular Cavity of Ag-Si-SiO2

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, the surface plasmon resonance (SPR) of rectangular cavity is investigated in Ag-Si-SiO2 under near-infrared light incident by finite-difference time-domain (FDTD). Between the surface plasma and the thickness of the silver film, the length of the silver film, the thickness of silicon, and the position of silicon, these relationships will be studied in a rectangular cavity, which is surrounded by silver film, two rectangular nanoscale silicons, and silicon dioxide. The surface plasmon resonance of the RCM is independent of the distance between the two silicons when the transverse silver film length l is fixed and of height d = 10k (k = 1, 2, 3, 4, and 5) nm of rectangular silicon and thickness t (t = 6, 7, 8, 9, 10, 11, and 12 nm) of silver film while the length l = 600 nm. The SPR is a lateral length dependence of silver film. The plasma resonance of the two first-order modes is distributed symmetrically on both sides of the local field in RCM, and it is irrelevant with the position of the vibration mode and the thickness of the silver film. On the basis of the above research, we propose to create a guided-wave resonance that can be directly observed from the normal incidence transmission spectra and electric field distribution. This structure can be used as a highly tunable optical sensitive element that can be tuned with a small change of transverse silver film length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FHL, García de Abajo FJ (2012) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1):431–440

    Article  CAS  PubMed  Google Scholar 

  2. Liang HQ, Liu B, Hu JF (2017) An ultra-highly sensitive surface plasmon resonance sensor based on D-shaped optical fiber with a silver-graphene layer. Optik Int J Light Electron Opt 149:149–154

    Article  CAS  Google Scholar 

  3. Gupta BD, Kant R (2018) Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures. Opt Laser Technol 101:144–161

    Article  CAS  Google Scholar 

  4. Wan Y, An YS, Tao Z, Deng LG (2018) Manipulation of surface plasmon resonance of a graphene-based Au aperture antenna in visible and near-infrared regions. Opt Commun 410:733–739

    Article  CAS  Google Scholar 

  5. Galvez F, Pérez de Lara D, García MA, Vicent JL (2017) Experimental set-up for exciting and detecting magneto-optical effects and surface plasmon resonance simultaneously. Measurement 111:279–283

    Article  Google Scholar 

  6. Lertvachirapaiboon C, Baba A, Ekgasit S, Shinbo K (2018) Transmission surface plasmon resonance techniques and their potential biosensor applications. Biosens Bioelectron 99(15):399–415

    Article  CAS  PubMed  Google Scholar 

  7. Selvendran S, Sivanantha RA, Yogalakshmi S (2018) A highly sensitive surface plasmon resonance biosensor using photonic crystal fiber filled with gold nanowire encircled by silicon lining. Optik Int J Light Electron Optics 156:112–120

    Article  CAS  Google Scholar 

  8. Reiner AT, Fossati S, Dostalek J (2018) Biosensor platform for parallel surface plasmon-enhanced epifluorescence and surface plasmon resonance detection. Sensors Actuators B Chem 257:594–601

    Article  CAS  Google Scholar 

  9. Devi KD, Singh SOF (2018) Influence of thermal annealing and radiation enhanced diffusion processes on surface plasmon resonance of gold implanted dielectric matrices. Radiat Phys Chem 144:141–148

    Article  CAS  Google Scholar 

  10. Jung HY, Yeo IS, Kim TU, Ki HC (2018) Surface plasmon resonance effect of silver nanoparticles on a TiO2 electrode for dye-sensitized solar cells. Appl Surf Sci 432(Part B):266–271

    Article  CAS  Google Scholar 

  11. Wang N, Zhang D, Deng XY, Sun Y (2018) A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection. Spectrochim Acta A Mol Biomol Spectrosc 191:290–295

    Article  CAS  PubMed  Google Scholar 

  12. Swain PK, Goswami N, Saha A (2017) Enhanced Goos-Hanchen shift and Imbert-Fedorov shift in three layered Kretschmann-Geometry with Gaussian beam, Laguerre-Gaussian beam and Bessel beam in silver nano layer with surface plasmon resonance. Mater Today Proc 4((2) (Part B)):4137–4143

    Article  Google Scholar 

  13. Lien J, Peck KA, Mengqi S, Guo T (2016) Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region. J Colloid Interface Sci 479:173–181

    Article  CAS  PubMed  Google Scholar 

  14. Shaik H, Basavaraju U, Rachith SN, Sundaramurthy M, Sheik AS, Mohan Rao G (2017) Surface-plasmon-induced photoabsorption of Ag nanoparticle embedded a-Si solar cell. Opt Mater 73:179–187

    Article  CAS  Google Scholar 

  15. Semwal V, Shrivastav AM, Verma R, Gupta BD (2016) Surface plasmon resonance based fiber optic ethanol sensor using layers of silver/silicon/hydrogel entrapped with ADH/NAD. Sensors Actuators B Chem 230:485–492

    Article  CAS  Google Scholar 

  16. Mu H, Wei B, Xie H, Jiang Y (2017) Effects of surface plasmon resonance of the Ag nanoparticles on the efficiency and color stability of the blue light phosphorescent organic light emitting diodes. J Lumin 192:1110–1118

    Article  CAS  Google Scholar 

  17. Fujiyoshi Y, Nemoto T, Kurata H (2017) Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy. Ultramicroscopy 175:116–120

    Article  CAS  PubMed  Google Scholar 

  18. Debela S, Mesfin B, Senbeta T (2018) Plasmon coupled photoluminescence from silver coated silicon quantum dots. J Lumin 196:264–269

    Article  CAS  Google Scholar 

  19. Hanuš J, Libenská H, Khalakhan I, Kuzminova A, Kylián O, Biederman H (2017) Localized surface plasmon resonance tuning via nanostructured gradient Ag surfaces. Mater Lett 192:119–122

    Article  CAS  Google Scholar 

  20. Li HJ, Wang LL, Liu J-Q, Huang Z-R, Sun B, Zhai X (2014) Tunable, mid-infrared ultra-narrowband filtering effect induced by two coplanar graphene strips. Plasmonics 9:1239–1243

    Article  CAS  Google Scholar 

  21. Yuan B, Jiang XX, Yao C, Bao MM, Liu JJ (2017) Plasmon-enhanced fluorescence imaging with silicon-based silver chips for protein and nucleic acid assay. Anal Chim Acta 955:98–107

    Article  CAS  PubMed  Google Scholar 

  22. Dong ZP, Le XD, Li XL, Zhang W, Dong CX, Ma JT (2014) Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl Catal B Environ 158–159:129–135

    Article  CAS  Google Scholar 

  23. He HT, Hong L, Zhang YW, Xiong DH, Liu ZR (2017) Enhanced high reflectance SiO2-Ag-SiO2 thin film adhesion for concentrating solar power reflector. Surf Interface 8:225–229

    Article  CAS  Google Scholar 

  24. Liu JP, Zhai X, Wang LL, Li HJ, Xie F, Lin Q, Xia SX (2016) Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide. Plasmonics 11(3):703–711

    Article  CAS  Google Scholar 

  25. Luo X, Zhai X, Wang LL, Lin Q (2015) Narrow-band plasmonic filter based on graphene waveguide with asymmetrical structure. Plasmonics 10(6):1427–1431

    Article  CAS  Google Scholar 

  26. Chen H, Zhang HY, Liu MD (2017) Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals. Opt Mater Express 7(9):3397–3407

    Article  CAS  Google Scholar 

  27. Luo WW, Cai W, Xiang YX (2016) Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system, optical. Express 24(6):5786–5793

    Google Scholar 

  28. Yue J, Shang XJ, Zhai X, Wang LL (2017) Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanorings and graphene grating. Plasmonics 12(2):523–528

    Article  CAS  Google Scholar 

  29. Liu GD, Zhai X, Wang LL (2018) A high-performance refractive index sensor based on Fano resonance in Si split-ring Metasurface 13(1): 15–19

  30. Fu GL, Zhai X, Li HJ (2016) Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips. Plasmonics 11(6):1597–1602

    Article  CAS  Google Scholar 

  31. Xiao WF, Luo X, Luo X, Wang LL (2017) Tunable nonreciprocal transmission system based on MIM waveguide with Kerr nonlinear material. Opt Commun 403:262–265

    Article  CAS  Google Scholar 

  32. Zhang S, Li GC, Chen YQ (2016) Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation. ACS Nano 10:11105–11114

    Article  CAS  PubMed  Google Scholar 

  33. Thomas S, Nair SK, Jamal EMA (2008) Size-dependent surface plasmon resonance in silver silica nanocomposites. Nanotechnology 19:075710–075716

    Article  PubMed  CAS  Google Scholar 

  34. Requena S, Doan H, Raut S, Achille AD (2016) Linear dichroism and optical anisotropy of silver nanoprisms in polymer films. Nanotechnology 27:325704–325709

    Article  CAS  PubMed  Google Scholar 

  35. Jiang SZ, Li Z, Zhang C (2017) A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure. J Phys D Appl Phys 50:165105–165114

    Article  CAS  Google Scholar 

  36. Rahman MM, Hattori N, Lin X, Yagai S (2014) Preparation and characterization of silver nanoparticles on localized surface plasmon-enhanced optical absorption. Jpn J Appl Phys 53:11RE01

    Article  CAS  Google Scholar 

  37. George N, Subha R, Thomas AR (2017) Plasmon enhanced two-photon absorption in modified Styrene–Maleic Anhydride Silver nanocomposites. Nano-Structures & Nano-Objects 11:32–38

    Article  CAS  Google Scholar 

  38. Gao WL, Shu J, Qiu CY, Xu QF (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACSNano 6(9):7806–7813

    CAS  Google Scholar 

  39. Lu CY, Wang JC, Yan SB (2017) Tunable multiple plasmon-induced transparencies based on asymmetrical graphene nanoribbon structures. Materials 10:699

    Article  CAS  PubMed Central  Google Scholar 

  40. Wei BZ, Jian SS (2017) Multiple modes plasmon-induced-transparency and slow light effect in a compact graphene coated nanowire waveguide system. Opt Commun 402:66–72

    Article  CAS  Google Scholar 

  41. Li HJ, Wang LL, Sun B (2014) Controlling mid-infrared surface plasmon polaritons in the parallel graphene pair. Appl Phys Express 7:125101–125104

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51571088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang-qing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xiao, Sf., Zhai, X. et al. Investigation of Surface Plasmon Resonance in the Rectangular Cavity of Ag-Si-SiO2. Plasmonics 13, 2313–2318 (2018). https://doi.org/10.1007/s11468-018-0754-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0754-y

Keywords

Navigation