Skip to main content
Log in

Sub-Wavelength Grating Enhanced Ultra-Narrow Graphene Perfect Absorber

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A sub-wavelength grating has been elaborately designed to enhance the absorption of the monolayer graphene at λ = 1.55 μm based on the coupled leaky mode theory (CLMT). The results indicate that the absorption can reach 99.8% at the resonant wavelength, and the absorption peak is ultra-narrow due to the excitation of TM31 mode in the grating structure. Taking advantages of the tunable chemical potential of graphene which is bias voltage controllable, the proposed structure can function as an adjustable absorber. The high figure of merit up to 1329 and sensitivity with the value of 66 are achieved. With the ultra-narrow absorption band and tunable peak positions, the graphene perfect absorber holds great potential application in sensing and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5):3677–3694

    Article  CAS  PubMed  Google Scholar 

  2. Choi MK, Park I, Kim DC, Joh E, Park OK, Kim J, Kim M, Choi C, Yang J, Cho KW, Hwang JH, Nam JM, Hyeon T, Kim JH, Kim DH (2015) Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Adv Funct Mater 25(46):7109–7118

    Article  CAS  Google Scholar 

  3. Kong WY, Wu GA, Wang KY, Zhang TF, Zou YF, Wang DD, Luo LB (2016) Graphene-beta-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater 28(48):10725–10731

    Article  CAS  PubMed  Google Scholar 

  4. Gan XT, Shiue RJ, Gao YD, Meric I, Heinz TF, Shepard K, Hone J, Assefa S, Englund D (2013) Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics 7(11):883–887

    Article  CAS  Google Scholar 

  5. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308

    Article  CAS  PubMed  Google Scholar 

  6. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6(11):749–758

    Article  CAS  Google Scholar 

  7. Zhu XL, Yan W, Jepsen PU, Hansen O, Mortensen NA, Xiao SS (2013) Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating. Appl Phys Lett 102(13):4

    Google Scholar 

  8. Thongrattanasiri S, Koppens FHL, de Abajo FJG (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108(4):5

    Article  CAS  Google Scholar 

  9. Jang MS, Brar VW, Sherrott MC, Lopez JJ, Kim L, Kim S, Choi M, Atwater HA (2014) Tunable large resonant absorption in a midinfrared graphene Salisbury screen. Phys Rev B 90(16):5

    Article  CAS  Google Scholar 

  10. Alaee R, Farhat M, Rockstuhl C, Lederer F (2012) A perfect absorber made of a graphene micro-ribbon metamaterial. Opt Express 20(27):28017–28024

    Article  CAS  PubMed  Google Scholar 

  11. Piper JR, Fan S (2014) Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1(4):347–353

    Article  CAS  Google Scholar 

  12. Liu YH, Chadha A, Zhao DY, Piper JR, Jia YC, Shuai YC, Menon L, Yang HJ, Ma ZQ, Fan SH, Xia FN, Zhou WD (2014) Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling. Appl Phys Lett 105(18):4

    Google Scholar 

  13. Guo J, Wu L, Dai X, Xiang Y, Fan D (2017) Absorption enhancement and total absorption in a graphene-waveguide hybrid structure. AIP Adv 7(2):025101

    Article  CAS  Google Scholar 

  14. Yu YL, Cao LY (2012) Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures. Opt Express 20(13):13847–13856

    Article  PubMed  Google Scholar 

  15. Cao LY, White JS, Park JS, Schuller JA, Clemens BM, Brongersma ML (2009) Engineering light absorption in semiconductor nanowire devices. Nat Mater 8(8):643–647

    Article  CAS  PubMed  Google Scholar 

  16. Huang LJ, Yu YL, Cao LY (2013) General modal properties of optical resonances in subwavelength nonspherical dielectric structures. Nano Lett 13(8):3559–3565

    Article  CAS  PubMed  Google Scholar 

  17. Yu YL, Cao LY (2013) The phase shift of light scattering at sub-wavelength dielectric structures. Opt Express 21(5):5957–5967

    Article  PubMed  Google Scholar 

  18. Palik ED (1998) Handbook of optical constants of solids. AcademicPress, Boston

    Google Scholar 

  19. Hanson GW (2008) Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302

    Article  CAS  Google Scholar 

  20. Yariv A (2000) Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron Lett 36(4):321–322

    Article  CAS  Google Scholar 

  21. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    Article  CAS  PubMed  Google Scholar 

  22. Liu ZQ, Hang JT, Chen J, Yan ZD, Tang CJ, Chen Z, Zhan P (2012) Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal. Opt Express 20(8):9215–9225

    Article  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge the support provided by the Ministry of Science and Technology of China (2017YFA0205801), the National Natural Science Foundation of China (11334008, 61705249, 61290301 and 61521005), the Fund of Shanghai Science and Technology Foundation (16JC1400401, 16ZR1445300, 16JC1400404), Shanghai Sailing Program (16YF1413200), Youth Innovation Promotion Association CAS (2017285), and Key research project of Frontier Science of Chinese Academy of Sciences (QYZDJ-SSW-JSC007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanhai Li or Xiaoshuang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Li, G., Yu, F. et al. Sub-Wavelength Grating Enhanced Ultra-Narrow Graphene Perfect Absorber. Plasmonics 13, 2267–2272 (2018). https://doi.org/10.1007/s11468-018-0748-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0748-9

Keywords

Navigation