Plasmonics

pp 1–8 | Cite as

Metal-Dielectric Composite Holography for Controlling the Propagations of Surface Plasmon Polaritons

Article
  • 23 Downloads

Abstract

Controlling the propagations of surface plasmon polaritons (SPPs) is important for many applications. Now, mainly structures for controlling SPPs are etched directly in the metal surface through experimental methods, such as focus ion beam lithography (FIB). In view of mature technology in processing dielectric products, we propose the metal-dielectric composite holography (MDCH) method to design dielectric structures for controlling the propagation of SPPs. The holographic groove structures are designed in dielectric film to control SPP propagation through the surface electromagnetic wave holography (SWH) method. The mutual coherence theory is applied to analyze the influence of the grooves in dielectric film on the phase of propagating SPPs, and the reconstruction condition is obtained. Based on the analysis results, two schemes are proposed to make MDCH structures satisfy the condition: reducing the width of the grooves or filling the grooves with another dielectric. The finite difference time domain (FDTD) method is applied to test the two schemes. Simulation results prove that two schemes are feasible when the width of the groove is smaller than 40 nm or the refractive index of the filling dielectric is limited to a certain range. The investigation verifies that the MDCH method is feasible and the SPP waves can be controlled with high efficiency. Based on the investigation, the mature hologram-fabricated methods and dielectric-processing methods may be used to fabricate structures for controlling SPP waves. The MDCH method may open up the possibility for mass production of plasmonic devices, avoiding the FIB experimental method.

Keywords

Surface plasmon Nanostructure fabrication Holographic optical elements 

PACS Numbers

42.25.Fx 42.40.Eq 42.82.Gw 

References

  1. 1.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  2. 2.
    William LB, Alain D, Ebbesen TW (2003) Surface plasmon suwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  3. 3.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefGoogle Scholar
  4. 4.
    Csaki A, Garwe F, Steinbruck A, Maubach G, Festag G, Weise A, Riemann I, König K, Fritzsche W (2007) A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas. Nano Lett 7:247–253CrossRefGoogle Scholar
  5. 5.
    Zhao LB, Zhang M, Huang YF, Williams CT, Wu DY, Ren B, Tian ZQ (2014) Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds. J Phys Chem Lett 5(7):1259–1266CrossRefGoogle Scholar
  6. 6.
    Bozhevolnyi SI (2008) Plasmonic nanoguides and circuits. Pan Stanford Publishing Pte. Ltd, ChicagoCrossRefGoogle Scholar
  7. 7.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511CrossRefGoogle Scholar
  8. 8.
    Zhang HC, Fan YF, Guo J, Fu XJ, Cui TJ (2016) Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. ACS Photonics 3(1):139–146CrossRefGoogle Scholar
  9. 9.
    Gwo S, Wang CY, Chen HY, Lin MH, Sun LY, Li XQ, Chen WL, Chang YM, Ahn H (2016) Plasmonic metasurfaces for nonlinear optics and quantitative SERS. ACS Photonics 3(8):1371–1384CrossRefGoogle Scholar
  10. 10.
    Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95:046802CrossRefGoogle Scholar
  11. 11.
    Zhang SP, Xu HX (2012) Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides. ACS Nano 6(9):8128–8135CrossRefGoogle Scholar
  12. 12.
    Crozier KB, Sundaramurthy A, Kino GS, Quate CF (2003) Optical antennas: resonators for local field enhancement. J Appl Phys 94(7):4632–4642CrossRefGoogle Scholar
  13. 13.
    Lezec HJ, Degiron A, Devaux E, Linke RA, Martìn-Moreno L, Garcìa-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297:820–822CrossRefGoogle Scholar
  14. 14.
    Yin L, Vlasko-Vlasov VK, Pearson J, Hiller JM, Hua J, Welp U, Brown DE, Kimball CW (2005) Subwavelength focusing and guiding of surface plasmons. Nano Lett 5(7):1399–1402CrossRefGoogle Scholar
  15. 15.
    Li L, Li T, Wang M, Zhang C, Zhu SN (2011) Plasmonic airy beam generated by in-plane diffraction. Phys Rev Lett 107:126804CrossRefGoogle Scholar
  16. 16.
    Li L, Li T, Wang SM, Zhu SN (2013) Collimated plasmon beam: nondiffracting versus linearly focused. Phys Rev Lett 110:046807CrossRefGoogle Scholar
  17. 17.
    Rui GH, Zhan QW, Cui YP (2015) Tailoring optical complex field with spiral blade plasmonic vortex lens. Sci Rep 5:13732CrossRefGoogle Scholar
  18. 18.
    Genevet P, Lin J, Kats MA, Capasso F (2012) Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat Commun 3:1278CrossRefGoogle Scholar
  19. 19.
    Du L, Kou SS, Balaur E, Cadusch JJ, Roberts A, Abbey B, Yuan XC, Tang D, Lin J (2015) Broadband chirality-coded meta-aperture for photon-spin resolving. Nat Commun 6:10051CrossRefGoogle Scholar
  20. 20.
    Chen YH, Fu JX, Li ZY (2011) Surface wave holography on designing subwavelength metallic structures. Opt Express 19:23908–23920CrossRefGoogle Scholar
  21. 21.
    Chen YH, Zhang MQ, Gan L, Wu XY, Sun L, Liu J, Wang J, Li ZY (2013) Holographic plasmonic lenses for surface plasmons with complex wavefront profile. Opt Express 21:17558–17566CrossRefGoogle Scholar
  22. 22.
    Chen YH, Huang L, Gan L, Li ZY (2012) Wavefront shaping of infrared light through a subwavelength hole. Light Sci Appl 1:e26CrossRefGoogle Scholar
  23. 23.
    Chen YG, Chen YH, Li ZY (2014) Direct method to control surface plasmon polaritons on metal surfaces. Opt Lett 39:339–342CrossRefGoogle Scholar
  24. 24.
    Chen YG, Wang Y, Li ZY (2014) Complicated wavefront shaping of surface plasmon polaritons on metal surface by holographic groove patterns. Plasmonics 9:1057–1062CrossRefGoogle Scholar
  25. 25.
    Chen YG, Li ZY (2016) Three-dimensional manipulations of surface plasmon polariton wave propagation. Plasmonics 11:1385–1391CrossRefGoogle Scholar
  26. 26.
    Chen YG, Yang FY, Liu J, Li ZY (2014) Broadband focusing and demultiplexing of surface plasmon polaritons on metal surface by holographic groove patterns. Opt Express 22:14727–14737CrossRefGoogle Scholar
  27. 27.
    Liu J, Chen YG, Gan L, Xiao TH, Li ZY (2016) Realization of plasmonic microcavity with full transverse and longitudinal mode selection. Sci Rep 6:27565CrossRefGoogle Scholar
  28. 28.
    Chen YG, Li ZY (2015) Free space optical beam coupled to surface plasmonic polariton waves via designed grooves in metal film. Chin Opt Lett 13(2):020501–020504CrossRefGoogle Scholar
  29. 29.
    Hariharan P (2002) Basics of holography. Cambridge University Press, Cambridge, pp 50–58CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsGuizhou UniversityGuiyangChina

Personalised recommendations