Advertisement

Plasmonics

pp 1–9 | Cite as

Proposition and Numerical Analysis of a Plasmonic Sensing Structure of Metallo-Dielectric Grating and Silver Nano-slabs in a Metal-Insulator-Metal Configuration

  • Mashnoon Alam Sakib
  • S. M. Enamul Hoque Yousuf
  • Sourov Das Gupta
  • Md Zahurul Islam
Article
  • 113 Downloads

Abstract

We propose and numerically investigate a near-infrared surface plasmon resonance-based refractive index sensor having in unison an extremely high sensitivity (1719 nm/RIU) and transmission efficiency (91.73%) with a high figure of merit (39.81). The proposed sensor structure, consisting of a 1D metallo-dielectric grating of silver and rectangular-shaped silver nano-slabs in a metal-insulator-metal configuration, excites both propagating surface plasmon polaritons and localized surface plasmon polaritons producing highly improved spectral response. Using the finite-difference time-domain computation method, the spectral characteristics were analyzed and some important sensing performances, such as sensitivity, transmission efficiency, full-width at half-maximum, and figure of merit, were optimized through numerical simulations as a function of the shape and size of the nanostructures. As a specific application, the proposed structure was also investigated for temperature sensing application and its temperature sensitivity is found to be much better than the state-of-the-art. The proposed sensor structure may have monumental applications in such areas as biomedical and environmental sensing applications and photonic integrated circuits.

Keywords

Surface plasmon resonance Integrated plasmonics Localized surface plasmon polaritons Propagating surface plasmon polaritons Photonic temperature sensor Finite-difference time-domain method 

References

  1. 1.
    Novotny L, Hecht B (2012) Principles of nano-optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Hall WP, Ngatia SN, Van Duyne RP (2011) LSPR biosensor signal enhancement using nanoparticle-antibody conjugates. J Phys Chem C 115:1410–1414CrossRefGoogle Scholar
  3. 3.
    Choi Y, Shin H, Hong S, Kim Y (2016) Combined top-down/bottom-up approach to structuring multi-sensing zones on a thin film and the application to SPR sensors. Nanotechnology 27(34):345302CrossRefGoogle Scholar
  4. 4.
    Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N, Yılmaz F, Denizli A (2017) Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sens Actuator B-Chem 241:446–454CrossRefGoogle Scholar
  5. 5.
    Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426CrossRefGoogle Scholar
  6. 6.
    Seo DD, Park JH, Jung J, Park SM, Ryu S, Kwak J, Song H (2009) One-dimensional gold nanostructures through directed anisotropic overgrowth from gold. J Phys Chem C 113(9):3449–3454CrossRefGoogle Scholar
  7. 7.
    Forcherio GT, Blake P, DeJarnette D, Roper DK (2014) Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices. Opt Express 22(15):17791–17804CrossRefGoogle Scholar
  8. 8.
    Klinkova A, Thérien-Aubin H, Ahmed A, Nykypanchuk D, Choueiri RM, Gagnon B, Muntyanu A, Gang O, Walker GC, Kumacheva E (2014) Structural and optical properties of self-assembled chains of plasmonic nanocubes. Nano Lett 14(11):6314–6321CrossRefGoogle Scholar
  9. 9.
    Radioff C, Halas NJ (2004) Plasmonic properties if concentric nanoshells. Nano Lett 4(7):1323–1327CrossRefGoogle Scholar
  10. 10.
    Yang R, Lu Z (2012) Subwavelength plasmonic waveguides and plasmonic materials. Int J Opt 2012:258013CrossRefGoogle Scholar
  11. 11.
    Lee IM, Jung J, Park J, Kim H, Lee B (2007) Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves. Opt Express 15(25):16596–16603CrossRefGoogle Scholar
  12. 12.
    Bozhevolnyi SI (2008) Plasmonic nanoguides and circuits. CRC, Boca RatonCrossRefGoogle Scholar
  13. 13.
    Knight JC, Broeng J, Birks TA, Russell PSJ (1998) Photonic band gap guidance in optical fibers. Science 282(5393):1476– 1478CrossRefGoogle Scholar
  14. 14.
    Lu XY, Zhang LX, Zhang TY (2015) Nanoslit-microcavity-based narrow band absorber for sensing applications. Opt Express (23):20715–20720Google Scholar
  15. 15.
    Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. PNAS 101(52):17930–17935CrossRefGoogle Scholar
  16. 16.
    Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD (2007) Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450:402–406CrossRefGoogle Scholar
  17. 17.
    Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with non-bleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97:996CrossRefGoogle Scholar
  18. 18.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyondtoxicity to cellular imaging. Acc Chem Res 41:1721CrossRefGoogle Scholar
  19. 19.
    Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115CrossRefGoogle Scholar
  20. 20.
    Engheta N (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317:1698CrossRefGoogle Scholar
  21. 21.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189CrossRefGoogle Scholar
  22. 22.
    Homola J (2006) Surface plasmon resonance based sensors. In: Springer series on chemical sensors and biosensors, vol 4. Springer, BerlinGoogle Scholar
  23. 23.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRefGoogle Scholar
  24. 24.
    Cetin AE, Altug H (2012) Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 6(11):9989–9995CrossRefGoogle Scholar
  25. 25.
    Lu XY, Wan RG, Liu F, Zhang TY (2015) High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures. J Mod Opt 63(2):177–183CrossRefGoogle Scholar
  26. 26.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefGoogle Scholar
  27. 27.
    Gong YK, Liu X, Li K, Huang J, Martinez JJ, Whippey DR, Copner N (2013) Coherent emission of light using stacked gratings. Phys Rev B 87:205121CrossRefGoogle Scholar
  28. 28.
    Ameling R, Langguth L, Hentschel M, Meshch M, Braun PV, Giessen H (2010) Cavity-enhanced localized plasmon resonance sensing. Appl Phys Lett 97:253116CrossRefGoogle Scholar
  29. 29.
    Wu T, Liu Y, Yu Z, Peng Y, Shu C, Ye H (2014) Sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22(7):7669–7677CrossRefGoogle Scholar
  30. 30.
    Al-mahmod MJ, Hyder R, Islam MZ (2017) Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications. Photonics Nanostruct Fundam Appl 25:52–57CrossRefGoogle Scholar
  31. 31.
    Zhou S, Wang F, Liang R, Xiao L, Hu M (2015) A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review. IEEE Sens J 15(2):646– 650CrossRefGoogle Scholar
  32. 32.
    Chen L, Liu Y, Yu Z, Wu D, Ma R, Zhang Y, Ye H (2016) Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity. Opt Express 24(9):9975–9983CrossRefGoogle Scholar
  33. 33.
    Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14(3):302–307CrossRefGoogle Scholar
  34. 34.
    Taflove A (1995) Computational electrodynamics: the finite-difference time-domain method. Norwood, Artech HouseGoogle Scholar
  35. 35.
    Wei PK, Huang YC, Chieng CC, Tseng FG, Fann WS (2005) Off-angle illumination induced surface plasmon coupling in subwavelength metallic slits. Opt Express 13(26):10784–10794CrossRefGoogle Scholar
  36. 36.
    Ordal MA, Bell RJ, Alexander J, Long LL, Querry MR (1985) Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W. Appl Opt 24(24):4493–4499CrossRefGoogle Scholar
  37. 37.
    Brendel R, Bormann D (1992) An infrared dielectric function model for amorphous solids. J Appl Phys 71:1CrossRefGoogle Scholar
  38. 38.
    Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120CrossRefGoogle Scholar
  39. 39.
    Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  40. 40.
    Homola J, Kuodela I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Actuator B-Chem 54(1–2):16–24CrossRefGoogle Scholar
  41. 41.
    Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor JH, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc Natl Acad Sci 108(29):11784–11789CrossRefGoogle Scholar
  42. 42.
    Pérez-Rodríguez C, Labrador-Páez L, Martín IR, Ríos S (2015) Temperature response of the whispering gallery mode resonances from the green upconversion emission of an Er3+ Yb3+ co-doped microsphere. Laser Phys Lett 12(4):046003CrossRefGoogle Scholar
  43. 43.
    Foreman MR, Swaim JD, Vollmer F (2015) Whispering gallery mode sensors: erratum. Adv Opt Photon 7:632–634CrossRefGoogle Scholar
  44. 44.
    Liu Z, Liu L, Zhu Z, Zhang Y, Wei Y, Zhang X, Zhao E, Zhang Y, Yang J, Yuan L (2016) Whispering gallery mode temperature sensor of liquid microresonastor. Opt Lett 41:4649–4652CrossRefGoogle Scholar
  45. 45.
    Wu T, Liu Y, Yu Z, Ye H, Peng Y, Shu C, Yang C, Zhang W, He H (2015) A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity. Opt Commun 339:1–6CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations