Skip to main content
Log in

Homogeneous Plasmonic Au Nanoparticles Fabrication Using In Situ Substrate Heating by Sputtering

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Increased usage of gold nanoparticles (Au NPs) in the high-tech world made these one of the pivotal components for large number of applications. In the present work, we present the fabrication of Au NPs and their characterisation for shape, size distribution and surface plasmon (SP) studies. Au NPs were synthesised on Si substrate in a self-assembled manner with different densities. In situ substrate heating was done to fabricate Au NPs with minimum size variation and direct deposition of these on the Si substrate. The prepared samples were then characterised by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), high-resolution transmission electron microscope (HRTEM), photoluminescence (PL) and UV-Vis diffuse reflectance spectroscopy (UV-DRS). The average size of the nanoparticles from FESEM was found to be 3, 5 and 9 nm for substrate temperatures of 400, 500 and 600 °C, respectively. Due to the high density of deposited Au NPs on the substrate, a strong and broad surface plasmon band was observed. UV spectra showed a shift in the absorption maxima towards the red region with increase in the temperature of substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Darvill D, Centeno A, Xie F (2013) Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology. Phys Chem Chem Phys 15:15709–15726. https://doi.org/10.1039/c3cp50415h

    Article  CAS  PubMed  Google Scholar 

  2. Li Z, Butun S, Aydin K (2014) Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials. ACS Photon 1:228–234. https://doi.org/10.1021/ph4000828

    Article  CAS  Google Scholar 

  3. Zhang J, Ou J-Y, Mac Donald KF, Zheludev NI (2012) Optical response of plasmonic relief meta-surfaces. J Opt 14:114002. https://doi.org/10.1088/2040-8978/14/11/114002

    Article  CAS  Google Scholar 

  4. Agasti SS, Rana S, Park MH, Kim CK, You CC, Rotello VM (2010) Nanoparticles for detection and diagnosis. Adv Drug Deliv Rev 62:316–328. https://doi.org/10.1016/j.addr.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  5. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840–13851. https://doi.org/10.1021/la9019475

    Article  CAS  Google Scholar 

  6. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744. https://doi.org/10.1021/jp0209289

    Article  CAS  Google Scholar 

  7. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825. https://doi.org/10.1002/adma.200902557

    Article  CAS  PubMed  Google Scholar 

  8. Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nano 1:31–63. https://doi.org/10.3390/nano1010031

    Article  CAS  Google Scholar 

  9. Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, Kawaguchi A, Hasegawa H, Kajino K, Ninomiya T, Ijiro K, Sawa H (2013) Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 7:3926–3938. https://doi.org/10.1021/nn3057005

    Article  CAS  PubMed  Google Scholar 

  10. Kumar A, Huo S, Zhang X, Liu J, Tan A, Li S, Jin S, Xue X, Zhao YY, Ji T, Han L, Liu H, Zhang XN, Zhang J, Zou G, Wang T, Tang S, Liang XJ (2014) Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum (IV) drug for prostate cancer treatment. ACS Nano 8:4205–4220. https://doi.org/10.1021/nn500152u

    Article  CAS  PubMed  Google Scholar 

  11. Zayats M, Baron R, Popov I, Willner I (2005) Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Lett 5:21–25. https://doi.org/10.1021/nl048547p

    Article  CAS  PubMed  Google Scholar 

  12. Ayati A, Ahmadpour A, Bamoharram FF, Tanhaei B, Mänttäri M, Sillanpää M (2014) A review on catalytic applications of au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere 107:163–174. https://doi.org/10.1016/j.chemosphere.2014.01.040

    Article  CAS  PubMed  Google Scholar 

  13. Manikandan D, Mohan S, Nair KGM (2003) Annealing-induced metallic core–shell clusterization in soda-lime glass: an optical absorption study—experiment and theory. Phys B Condens Matter 337:64–68. https://doi.org/10.1016/S0921-4526(03)00325-9

    Article  CAS  Google Scholar 

  14. Udayabhaskar R, Mangalaraja RV, Manikandan D, Arjunan V, Karthikeyan B (2012) Room temperature synthesis and optical studies on Ag and Au mixed nanocomposite polyvinylpyrrolidone polymer films. Spectrochim Acta A Mol Biomol Spectrosc 99:69–73. https://doi.org/10.1016/j.saa.2012.08.066

    Article  CAS  PubMed  Google Scholar 

  15. Jin Z, Liu G, Wang J (2013) Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle. AIP Adv. https://doi.org/10.1063/1.4804948

    Article  CAS  Google Scholar 

  16. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782. https://doi.org/10.1039/b806051g

    Article  CAS  PubMed  Google Scholar 

  17. Hornos Carneiro MF, Barbosa F (2016) Gold nanoparticles: a critical review of therapeutic applications and toxicological aspects. J Toxicol Environ Heal Part B 19:129–148. https://doi.org/10.1080/10937404.2016.1168762

    Article  CAS  Google Scholar 

  18. Abadeer NS, Murphy CJ (2016) Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 120:4691–4716. https://doi.org/10.1021/acs.jpcc.5b11232

    Article  CAS  Google Scholar 

  19. Alaqad K, Saleh TA (2016) Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs. J Environ Anal Toxicol. https://doi.org/10.4172/2161-0525.1000384

  20. Long NN, Van VL, Kiem CD et al (2009) Synthesis and optical properties of colloidal gold nanoparticles. J Phys Conf Ser 187:12026. https://doi.org/10.1088/1742-6596/187/1/012026

    Article  CAS  Google Scholar 

  21. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 0:801–802. https://doi.org/10.1039/C39940000801

    Article  CAS  Google Scholar 

  22. Watanabe K, Menzel D, Nilius N, Freund HJ (2006) Photochemistry on metal nanoparticles. Chem Rev 106:4301–4320. https://doi.org/10.1021/cr050167g

    Article  CAS  PubMed  Google Scholar 

  23. Gutiérrez-Wing C, Esparza R, Vargas-Hernández C, Fernández García ME, José-Yacamán M (2012) Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures. Nano 4:2281–2287. https://doi.org/10.1039/c2nr12053d

    Article  CAS  Google Scholar 

  24. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. https://doi.org/10.1021/cr030027b

    Article  CAS  PubMed  Google Scholar 

  25. Amendola V, Polizzi S, Meneghetti M (2006) Laser ablation synthesis of gold nanoparticles in organic solvents. J Phys Chem B 110:7232–7237. https://doi.org/10.1021/jp0605092

    Article  CAS  PubMed  Google Scholar 

  26. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297. https://doi.org/10.1146/annurev.physchem.58.032806.104607

    Article  CAS  PubMed  Google Scholar 

  27. Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671. https://doi.org/10.1039/C0CS00018C

    Article  CAS  PubMed  Google Scholar 

  28. Scaramuzza S, Zerbetto M, Amendola V (2016) Synthesis of gold nanoparticles in liquid environment by laser ablation with geometrically confined configurations: insights to improve size control and productivity. J Phys Chem C 120:9453–9463. https://doi.org/10.1021/acs.jpcc.6b00161

    Article  CAS  Google Scholar 

  29. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118. https://doi.org/10.1007/s11468-007-9031-1

    Article  CAS  Google Scholar 

  30. Langhammer C, Yuan Z, Zorić I, Kasemo B (2006) Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett 6:833–838. https://doi.org/10.1021/nl060219x

    Article  CAS  PubMed  Google Scholar 

  31. Manikandan P, Manikandan D, Manikandan E, Ferdinand AC (2014) Surface enhanced Raman scattering (SERS) of silver ions embedded nanocomposite glass. Spectrochim Acta A Mol Biomol Spectrosc 124:203–207. https://doi.org/10.1016/j.saa.2014.01.033

    Article  CAS  PubMed  Google Scholar 

  32. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779. https://doi.org/10.1021/cr2001178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Szunerits S, Boukherroub R (2012) Sensing using localised surface plasmon resonance sensors. Chem Commun (Camb) 48:8999–9010. https://doi.org/10.1039/c2cc33266c

    Article  CAS  Google Scholar 

  34. Chung T, Lee SY, Song EY, Chun H, Lee B (2011) Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11:10907–10929. https://doi.org/10.3390/s111110907

    Article  CAS  PubMed  Google Scholar 

  35. Chehimi MM, Cabet-deliry E, Watts JF (2003) Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates. Colloids Surf A 218:225–239. https://doi.org/10.1016/S0927-7757(02)00594-0

    Article  CAS  Google Scholar 

  36. Weinrib H, Meiri A, Duadi H, Fixler D (2012) Uniformly immobilizing gold nanorods on a glass substrate. J Phys B At Mol Opt Phys. https://doi.org/10.1155/2012/683830

    Article  CAS  Google Scholar 

  37. FRENS G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22. https://doi.org/10.1038/physci241020a0

    Article  CAS  Google Scholar 

  38. Primo A, Corma A, García H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910. https://doi.org/10.1039/C0CP00917B

    Article  CAS  PubMed  Google Scholar 

  39. Unlu I, Soares JW, Steeves DM, Whitten JE (2015) Photocatalytic activity and fluorescence of gold/zinc oxide nanoparticles formed by dithiol linking. Langmuir 31:8718–8725. https://doi.org/10.1021/acs.langmuir.5b01632

    Article  CAS  PubMed  Google Scholar 

  40. Cooper CT, Rodriguez M, Blair S, Shumaker-Parry JS (2015) Mid-infrared localized plasmons through structural control of gold and silver nanocrescents. J Phys Chem C 119:11826–11832. https://doi.org/10.1021/acs.jpcc.5b01529

    Article  CAS  Google Scholar 

  41. Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75:2897–2899. https://doi.org/10.1063/1.125183

    Article  CAS  Google Scholar 

  42. Bryant HC, Cox AJ (1966) Mie theory and the glory. J Opt Soc Am 56:1529. https://doi.org/10.1364/JOSA.56.001529

    Article  Google Scholar 

  43. Oh M-K, Shin Y-S, Lee C-L, de R, Kang H, Yu NE, Kim BH, Kim JH, Yang JK (2015) Morphological and SERS properties of silver nanorod array films fabricated by oblique thermal evaporation at various substrate temperatures. Nanoscale Res Lett 10:259–962. https://doi.org/10.1186/s11671-015-0962-8

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the support and help they got from the Center of Excellence in Nanoelectronics (CEN) under Indian Nanoelectronics Users’ Program at Indian Institute of Technology (IIT), Bombay, which has been sponsored by Department of Information Technology (DIT), Government of India for the fabrication of the samples and their structural and optical measurements carried out at there. We also acknowledge the Sophisticated Analytical Instrument Facility (SAIF), IITB, providing us the HR-TEM facility. We would like to give special thanks to Dr. Nageshwari Project Director at INUP IIT Bombay for continuing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neena Jaggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathee, N., Jaggi, N. Homogeneous Plasmonic Au Nanoparticles Fabrication Using In Situ Substrate Heating by Sputtering. Plasmonics 13, 2175–2182 (2018). https://doi.org/10.1007/s11468-018-0735-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0735-1

Keywords

Navigation