Skip to main content
Log in

Complementary Aluminum Nanopatch/Nanohole Arrays for Broad Palettes of Colors

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We investigate aluminum nanopatch/nanohole arrays surrounded by a dielectric material on plastic substrates for large area color printing. In this specific arrangement, metallic nanopatches have a smaller size than that of the nanoholes, lying distantly above their complementary nanoholes. Simulation results show that the coloring in reflection as well as in transmission can be tuned greatly by the structure period and the duty cycle. In contrast, variations of the separation distance practically do not change the hue. Manufactured samples having a large range of these grating parameters demonstrate a broad palette of bright colors in reflection and transmission. The fabrication process may be scaled up for large area color printing, since it can be implemented as a cost-effective roll-to-roll process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  PubMed  Google Scholar 

  2. Chen Q, Cumming DRS (2010) High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt Express 18:14056–14062

    Article  CAS  PubMed  Google Scholar 

  3. Liu YJ, Si GY, Leong ESP, Xiang N, Danner AJ, Teng JH (2012) Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv Mater 24:131–135

    CAS  Google Scholar 

  4. Chen WT, Yang KY, Wang CM, Huang YW, Sun G, Chiang ID, Liao CY, Hsu WL, Lin HT, Sun S, Zhou L, Liu AQ, Tsai DP (2014) High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14:225–230

    Article  CAS  Google Scholar 

  5. Wu YKR, Hollowell AE, Zhang C, Guo LJ (2013) Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci Rep 3:1194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Lochbihler H (2009) Colored images generated by metallic sub-wavelength gratings. Opt Express 17:12189–12196

    Article  CAS  PubMed  Google Scholar 

  7. Kumar K, Duan H, Hegde RS, Koh SC, Wei JN, Yang JK (2012) Printing colour at the optical diffraction limit. Nat Nanotechnol 7:557–561

    Article  CAS  PubMed  Google Scholar 

  8. Inoue D, Miura A, Nomura T, Fujikawa H, Sato K, Ikeda N, Tsuya D, Sugimoto Y, Koide Y (2011) Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl Phys Lett 98:093113

    Article  CAS  Google Scholar 

  9. Kristensen A, Yang JKW, Bozhevolnyi SI, Link S, Nordlander P, Halas NJ, Mortensen NA (2016) Plasmonic colour generation. Nat Rev Mater 2:16088

    Article  CAS  Google Scholar 

  10. Fu Y, Tippets CA, Donev EU, Lopez R (2016) Structural colors: from natural to artificial systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:758–775

    Article  PubMed  Google Scholar 

  11. Ok JG, Shin YJ, Park HJ, Guo LJ (2015) A step toward next-generation nanoimprint lithography: extending productivity and applicability. Appl Phys A 121:343–356

    Article  CAS  Google Scholar 

  12. Ahn SH, Guo LJ (2009) Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3:2304–2310

    Article  CAS  PubMed  Google Scholar 

  13. Lochbihler H, Ye Y (2013) Two-dimensional subwavelength gratings with different frontside/backside reflectance. Opt Lett 38:1028–1030

    Article  PubMed  Google Scholar 

  14. Li WD, Hu J, Chou SY (2011) Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal rods. Opt Express 19:21098–21108

    Article  CAS  PubMed  Google Scholar 

  15. Shrestha VR, Lee SS, Kim ES, Choi DY (2014) Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett 14:6672–6678

    Article  CAS  PubMed  Google Scholar 

  16. Goh XM, Zheng Y, Tan SJ, Zhang L, Kumar K, Qiu CW, Yang JKW (2014) Three-dimensional plasmonic stereoscopic prints in full colour. Nat Commun 5:5361

    Article  CAS  PubMed  Google Scholar 

  17. Tan SJ, Zhang L, Zhu D, Goh XM, Wang YM, Kumar K, Qiu CW, Yang JK (2014) Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 14:4023–4029

    Article  CAS  PubMed  Google Scholar 

  18. Olson J, Manjavacas A, Liu L, Chang WS, Foerster B, King NS, Knight MW, Nordlander P, Halas NJ, Link S (2014) Vivid, full-color aluminum plasmonic pixels. Proc Natl Acad Sci 111:14348–14353

    Article  CAS  PubMed  Google Scholar 

  19. James TD, Mulvaney P, Roberts A (2016) The Plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett 16:3817–3823

    Article  CAS  PubMed  Google Scholar 

  20. Xue J, Zhou ZK, Wei Z, Su R, Lai J, Li J, Li C, Zhang T, Wang XH (2015) Scalable, full-colour and controllable chromotropic plasmonic printing. Nat Commun 6: 8906

  21. Cheng F, Yang X, Rosenmann D, Stan L, Czaplewski D, Gao J (2015) Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer. Opt Express 23:25329–25339

    Article  CAS  PubMed  Google Scholar 

  22. McPeak KM, Jayanti SV, Kress SJ, Meyer S, Iotti S, Rossinelli A, Norris DJ (2015) Plasmonic films can easily be better: rules and recipes. ACS Photonics 2:326–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Mortensen NA (2014) Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14:4499–4504

    Article  CAS  PubMed  Google Scholar 

  24. Lochbihler H (2015) Polarizing and angle-sensitive color filter in transmittance for security feature applications. Adv Opt Technol 4:71–77

    Article  Google Scholar 

  25. Moharam MG, Gaylord TK (1986) Rigorous coupled-wave analysis of metallic surface-relief gratings. J Opt Soc Am A 3:1780–1787

    Article  CAS  Google Scholar 

  26. Grann EB, Moharam MG, Pommet DA (1994) Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings. J Opt Soc Am A 11:2695–2703

    Article  Google Scholar 

  27. Klein GA (2010) Industrial color physics. Springer, New York

    Book  Google Scholar 

Download references

Funding

Yan Ye acknowledges support from Key University Science Research Project of Jiangsu Province (14KJA510006), the National Science Foundation (NSF) (61575132, 61107016, 51302179, 91323303), Suzhou Sci-tech Development Project (ZXG2013040), and Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Lochbihler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lochbihler, H., Ye, Y. & Xu, Y. Complementary Aluminum Nanopatch/Nanohole Arrays for Broad Palettes of Colors. Plasmonics 13, 2161–2167 (2018). https://doi.org/10.1007/s11468-018-0733-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0733-3

Keywords

Navigation