Skip to main content
Log in

Multi-Band Circular Dichroism Induced by Surface Plasmonic Resonance in Bi-Layer Semi-Ring/Rod Nanostructure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonic chiroptical effects have received more and more attention for their wide application in the fields of plasmonic sensing, biological detection, and analytical chemistry. In this study, we propose a bi-layer semi-ring/rod nanostructure array. The results calculated by the finite element method show that under the exciting of left-handed circularly polarized light and right-handed circularly polarized light, the nanostructure can produce strong multi-band circular dichroism (CD) signal due to the different coupling modes of electric dipole-electric dipole or magnetic dipole-electric dipole. In addition, the CD signal is strongly dependent on the tilt angle θ, the length L of nanorod, the radius R2, and the distance D. In particular, the adjustment of θ can realize the switching of the CD signal between appear and vanish, and the change of L can achieve manipulation only for a particular resonance mode. The results in this study show that the bi-layer semi-ring/rod array nanostructure provides guidance for the generation of CD using plasmonic nanostructures, and it also shows potential application in spectral anti-crosstalk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berova N, Nakanishi K, Woody RW (2000) Circular dichroism: principles and applications[J]. Circ Dichroism Princ Appl

  2. Valev VK, Baumberg JJ, Sibilia C, Verbiest T (2013) Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook.[J]. Adv Mater 25(18):2517–2534

    Article  CAS  Google Scholar 

  3. Wei PP, Tomter AB, RØhr AK et al (2006) Circular dichroism and magnetic circular dichroism studies of the active site of p53R2 from human and mouse: iron binding and nature of the biferrous site relative to other ribonucleotide reductases.[J]. Biochemistry 45(47):14043–14051

    Article  CAS  PubMed  Google Scholar 

  4. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism[J]. Biochim Biophys Acta Proteins Proteomics 1751(2):119–139

    Article  CAS  Google Scholar 

  5. Li JN, Liu TZ, Zheng HR, Gao F, Dong J, Zhang ZL, Zhang ZY (2013) Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers[J]. Opt Express 21(14):17176–17185

    Article  CAS  PubMed  Google Scholar 

  6. Punj D, Regmi R, Devilez A, Plauchu R, Moparthi SB, Stout B, Bonod N, Rigneault H, Wenger J (2015) Self-assembled nanoparticle dimer antennas for plasmonic-enhanced single-molecule fluorescence detection at micromolar concentrations[J]. Acs Photonics 2(8):1099–1107

    Article  CAS  Google Scholar 

  7. Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110(37):18243–18253

    Article  CAS  PubMed  Google Scholar 

  8. Barrow SJ, Funston AM, Wei X, Mulvaney P (2013) DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures[J]. Nano Today 8(2):138–167

    Article  CAS  Google Scholar 

  9. Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy RV, Lapthorn AJ, Kelly SM, Barron LD, Gadegaard N, Kadodwala M (2010) Ultrasensitive detection and characterization of biomolecules using superchiral fields[J]. Nat Nanotechnol 5(11):783–787

    Article  CAS  Google Scholar 

  10. Schäferling M, Dregely D, Hentschel M et al (2012) Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures[J]. Physrevx 2(3):4186–4190

    Google Scholar 

  11. Tang Y, Sun L, Cohen AE (2013) Chiroptical hot spots in twisted nanowire plasmonic oscillators[J]. Appl Phys Lett 102(4):163901

    Article  CAS  Google Scholar 

  12. Schäferling M, Yin X, Engheta N, Giessen H (2014) Helical plasmonic nanostructures as prototypical chiral near-field sources[J]. Acs Photonics 1(6):530–537

    Article  CAS  Google Scholar 

  13. Gutsche P, Mäusle R, Burger S (2016) Locally enhanced and tunable optical chirality in helical metamaterials. Photonics 3(4)

  14. Wang Y, Deng J, Wang G, Fu T, Qu Y, Zhang Z (2016) Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness[J]. Opt Express 24(3):2307–2317

    Article  CAS  PubMed  Google Scholar 

  15. Hu J, Zhao X, Li R, Zhu A, Chen L, Lin Y, Cao B, Zhu X, Wang C (2016) Broadband circularly polarizing dichroism with high efficient plasmonic helical surface.[J]. Opt Express 24(10):11023–11032

    Article  CAS  PubMed  Google Scholar 

  16. Song C, Blaber MG, Zhao G, Zhang P, Fry HC, Schatz GC, Rosi NL (2013) Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures[J]. Nano Lett 13(7):3256–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qu Y, Huang L, Wang L, Zhang Z (2017) Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure[J]. Opt Express 25(5):5480–5487

    Article  PubMed  Google Scholar 

  18. Cao T, Zhang L, Simpson RE, Wei C, Cryan MJ (2013) Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials.[J]. Opt Express 21(23):27841–27851

    Article  CAS  Google Scholar 

  19. Eftekhari F, Davis TJ (2012) Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances[J]. Phys Rev B Condens Matter 86(7):3305–3307

    Article  CAS  Google Scholar 

  20. Dong J, Zhou J, Koschny T, Soukoulis C (2009) Bi-layer cross chiral structure with strong optical activity and negative refractive index[J]. Opt Express 17(16):14172

    Article  CAS  PubMed  Google Scholar 

  21. Yin X, Schäferling M, Metzger B, Giessen H (2013) Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model[J]. Nano Lett 13(12):6238–6243

    Article  CAS  Google Scholar 

  22. Wang M, Xiong X, Sun WH et al (2016) Switching the electric and magnetic responses in a metamaterial[J]. Phys Rev B 80(20):2665–2668

    Google Scholar 

  23. Zu S, Bao Y, Fang Z (2016) Planar plasmonic chiral nanostructures.[J]. Nano 8(7):3900

    CAS  Google Scholar 

  24. Decker M, Zhao R, Soukoulis CM, Linden S, Wegener M (2010) Twisted split-ring-resonator photonic metamaterial with huge optical activity.[J]. Opt Lett 35(10):1593–1595

    Article  CAS  PubMed  Google Scholar 

  25. Tian X, Fang Y, Zhang B (2014) Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers[J]. Acs Photonics 1(11):1156–1164

    Article  CAS  Google Scholar 

  26. Auguié B, Alonsogómez JL, Guerreromartínez A et al (2011) Fingers crossed: optical activity of a chiral dimer of plasmonic nanorods[J]. J Phys Chem Lett 2(8):846–851

    Article  CAS  Google Scholar 

  27. Jin JM (2002) The finite element method inelectromagnetics.Wiley IEEE press, New York

  28. Johnson PB, Christy RW (1972) Optical constants of the Noble metals[J]. Physrevb 6(12):4370–4379

    CAS  Google Scholar 

  29. Wang Y, Wen X, Qu Y, Wang L, Wan R, Zhang Z (2016) Co-occurrence of circular dichroism and asymmetric transmission in twist nanoslit-nanorod arrays.[J]. Opt Express 24(15):16425–16433

    Article  CAS  PubMed  Google Scholar 

  30. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis[J]. J Phys Chem B 110(32):15666–15675

    Article  CAS  PubMed  Google Scholar 

  31. Boca S, Rugina D, Pintea A, Barbu-Tudoran L, Astilean S (2011) Flower-shaped gold nanoparticles: synthesis, characterization and their application as SERS-active tags inside living cells.[J]. Nanotechnology 22(5):055702

    Article  CAS  PubMed  Google Scholar 

  32. Hutter E, Fendler J (2004) Exploitation of localized surface plasmon resonance[J]. Adv Mater 16(19):1685–1706

    Article  CAS  Google Scholar 

  33. Hentschel M, Ferry VE, Alivisatos AP (2015) Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of Plasmon hybridization[J]. Acs Photonics 2(9):150818134916004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Open Project of State Key Laboratory of Transient Optics and Photonic Technology (No. SKLST201505), and National Natural Science Foundation of China (No. 61077072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qieni Lu.

Ethics declarations

This research did not involve any human or animal participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Lu, Q. & Ge, B. Multi-Band Circular Dichroism Induced by Surface Plasmonic Resonance in Bi-Layer Semi-Ring/Rod Nanostructure. Plasmonics 13, 2111–2116 (2018). https://doi.org/10.1007/s11468-018-0727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0727-1

Keywords

Navigation