pp 1–9 | Cite as

Improving Efficiency and Birefringence of an All-Dielectric Metasurface Quarter-Wave Plate Using Graphene

  • Edgar Owiti
  • Hanning Yang
  • Peng Liu
  • Calvine Ominde
  • Xiudong Sun


Conventional all-dielectric metasurfaces show remarkable properties including high efficiency and tunability of the optical response. However, extreme narrow bandwidth is a limitation that reduce their application in the photonic sensor devices. In this work, an efficient hybrid silicon-graphene metasurface is numerically proposed and designed. Through the sandwiched graphene layer, the structure shows unique quarter-wave properties, tunable through the dimensions of silicon, the Fermi energy of graphene, and an external gate voltage. Dynamic tuning is achieved by reversing the gate voltage: circular polarization state is switched between the right- and the left-handed states by reversing the gate voltage. A 95% polarization conversion ratio and a 96% ellipticity ratio are obtained while converting linearly polarized light into circularly polarized light in the near infrared. Additionally, by integrating graphene with silicon, the Q-factor and the trapped magnetic modes in the silicon are effectively modulated. The structure is compact and has an ultrathin design thickness of ∼0.1 λ, in the telecommunication wavelength. The above properties are essential for integration into photonic sensing devices and for compatibility with the CMOS devices.


Metamaterials Polarization converter All-dielectric metasurface 


  1. 1.
    Zhang J, MacDonald KF, Zheludev NI (2013) Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt Express 21(22):26721–26728CrossRefGoogle Scholar
  2. 2.
    Argyropoulos C (2015) Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene. Opt Express 23(18):23787–23797CrossRefGoogle Scholar
  3. 3.
    Kivshar Y, Miroshnichenko A (2017) Meta-optics with Mie resonances. Opt Photonics News 28(1):24–31CrossRefGoogle Scholar
  4. 4.
    Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339 (6125):1232009CrossRefGoogle Scholar
  5. 5.
    Liu Z, Li Z, Liu Z, Cheng H, Liu W, Tang C, Tian J (2017) Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics 4(8):2061–2069CrossRefGoogle Scholar
  6. 6.
    Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Mortensen NA (2014) Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14(8):4499–4504CrossRefGoogle Scholar
  7. 7.
    Ding F, Wang Z, He S, Shalaev VM, Kildishev AV (2015) Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. Acs Nano 9(4):4111–4119CrossRefGoogle Scholar
  8. 8.
    Kim J, Choudhury S, DeVault C, Zhao Y, Kildishev AV, Shalaev VM, Alu A, Boltasseva A (2016) Controlling the polarization state of light with plasmonic metal oxide metasurface. ACS Nano 10(10):9326–9333CrossRefGoogle Scholar
  9. 9.
    Chen M, Chang L, Xiuqian T, Xiao X, Chen H (2017) Plasmonic quarter-wave plate with U-shaped nanopatches. Optik-International Journal for Light and Electron Optics 134:179–186CrossRefGoogle Scholar
  10. 10.
    Guo T, Argyropoulos C (2016) Broadband polarizers based on graphene metasurfaces. Opt Lett 41 (23):5592–5595CrossRefGoogle Scholar
  11. 11.
    Wang X, Chen C, Pan L, Wang J (2016) A graphene-based Fabry-Pérot spectrometer in mid-infrared region. Sci Rep 6Google Scholar
  12. 12.
    Huidobro PA, Maier SA, Pendry JB (2017) Tunable plasmonic metasurface for perfect absorption. EPJ Applied Metamaterials 4:6CrossRefGoogle Scholar
  13. 13.
    Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan PM, Kono J, Xu Q (2013) Excitation and active control of propagating surface plasmon polaritons in graphene. Nano Lett 13(8):3698–3702CrossRefGoogle Scholar
  14. 14.
    Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Lukyanchuk B (2016) Optically resonant dielectric nanostructures. Science 354(6314):aag2472CrossRefGoogle Scholar
  15. 15.
    Petrov M, Babicheva V, Baryshnikova K, Belov P (2015) Substrate-mediated zero backscattering from dielectric metasurfaces. arXiv:1511.08473
  16. 16.
    Yan J, Liu P, Lin Z, Wang H, Chen H, Wang C, Yang G (2015) Directional Fano resonance in a silicon nanosphere dimer. Acs Nano 9(3):2968–2980CrossRefGoogle Scholar
  17. 17.
    Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J (2014) Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14(3):1394–1399CrossRefGoogle Scholar
  18. 18.
    Dai Y, Cai H, Ding H, Ning Z, Pan N, Zhu H, Shi Q, Wang X (2015) Near-infrared quarter-waveplate with near-unity polarization conversion efficiency based on silicon nanowire array. Opt Express 23(7):8929–8938CrossRefGoogle Scholar
  19. 19.
    Qiao P, Zhu L, Chew WC, Chang-Hasnain CJ (2015) Theory and design of two-dimensional high-contrast-grating phased arrays. Opt Express 23(19):24508–24524CrossRefGoogle Scholar
  20. 20.
    Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A (2015) Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 6, 7069–7069Google Scholar
  21. 21.
    Chen M, Cai J, Sun W, Chang L, Xiao X (2016) High-efficiency all-dielectric metasurfaces for broadband polarization conversion. Plasmonics 13(1):21–29CrossRefGoogle Scholar
  22. 22.
    Koenderink AF, Alù A, Polman A (2015) Nanophotonics: Shrinking light-based technology. Science 348(6234):516–521CrossRefGoogle Scholar
  23. 23.
    Zhang Z, Luo J, Song M, Yu H (2017) Polarization filtering and phase controlling metasurfaces based on a metal-insulator-metal grating. Plasmonics 12(6):797–1803Google Scholar
  24. 24.
    Zheng X, Xiao Z, Ling X (2018) A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics 13(1):287–291CrossRefGoogle Scholar
  25. 25.
    Chikhi N, Lisitskiy M, Papari G, Tkachenko V, Andreone A (2016) A hybrid tunable THz metadevice using a high birefringence liquid crystal. Sci Rep 6, 34536–34536Google Scholar
  26. 26.
    Liu Z, Aydin K (2016) Enhanced infrared transmission through gold nanoslit arrays via surface plasmons in continuous graphene. Opt Express 24(24):27882–27889CrossRefGoogle Scholar
  27. 27.
    Wu L, Yang Z, Cheng Y, Gong R, Zhao M, Zheng Y, Duan J, Yuan X (2014) Circular polarization converters based on bi-layered asymmetrical split ring metamaterials. Appl Phys A 116(2):643–648CrossRefGoogle Scholar
  28. 28.
    Wang T, Wang Y, Luo L, Wang L, Zhang Z (2017) Tunable circular dichroism of achiral graphene plasmonic structures. Plasmonics 12(3):829–833CrossRefGoogle Scholar
  29. 29.
    Chou J, Parameswaran L, Kimball B, Rothschild M (2016) Electrically switchable diffractive waveplates with metasurface aligned liquid crystals. Opt Express 24(21):24265–24273CrossRefGoogle Scholar
  30. 30.
    Icenogle H, Platt BC, Wolfe WL (1976) Refractive indexes and temperature coefficients of germanium and silicon. Appl Opt 15(10):2348–2351CrossRefGoogle Scholar
  31. 31.
    Cheng J, Ansari-Oghol-Beig D, Mosallaei H (2014) Wave manipulation with designer dielectric metasurfaces. Opt Lett 39(21):6285–6288CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Alù A (2011) Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 84(20):205428CrossRefGoogle Scholar
  33. 33.
    Kim J, Son H, Cho DJ, Geng B, Regan W, Shi S, Kim K, Zettl A, Shen YR, Wang F (2012) Electrical control of optical plasmon resonance with graphene. Nano Lett 12(11):5598–5602CrossRefGoogle Scholar
  34. 34.
    Li Q, Tian Z, Zhang X, Xu N, Singh R, Gu J, Lv P, Luo LB, Zhang S, Han J et al (2015) Dual control of active graphene–silicon hybrid metamaterial devices. 146–153 90:146Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Modern Optics, Department of PhysicsHarbin Institute of TechnologyHarbinChina
  2. 2.Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information TechnologyHarbinChina
  3. 3.Department of PhysicsJomo Kenyatta University of Agriculture TechnologyNairobiKenya
  4. 4.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanChina

Personalised recommendations