Skip to main content

Advertisement

Log in

Improving Efficiency and Birefringence of an All-Dielectric Metasurface Quarter-Wave Plate Using Graphene

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Conventional all-dielectric metasurfaces show remarkable properties including high efficiency and tunability of the optical response. However, extreme narrow bandwidth is a limitation that reduce their application in the photonic sensor devices. In this work, an efficient hybrid silicon-graphene metasurface is numerically proposed and designed. Through the sandwiched graphene layer, the structure shows unique quarter-wave properties, tunable through the dimensions of silicon, the Fermi energy of graphene, and an external gate voltage. Dynamic tuning is achieved by reversing the gate voltage: circular polarization state is switched between the right- and the left-handed states by reversing the gate voltage. A 95% polarization conversion ratio and a 96% ellipticity ratio are obtained while converting linearly polarized light into circularly polarized light in the near infrared. Additionally, by integrating graphene with silicon, the Q-factor and the trapped magnetic modes in the silicon are effectively modulated. The structure is compact and has an ultrathin design thickness of ∼0.1 λ, in the telecommunication wavelength. The above properties are essential for integration into photonic sensing devices and for compatibility with the CMOS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang J, MacDonald KF, Zheludev NI (2013) Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt Express 21(22):26721–26728

    Article  PubMed  Google Scholar 

  2. Argyropoulos C (2015) Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene. Opt Express 23(18):23787–23797

    Article  CAS  PubMed  Google Scholar 

  3. Kivshar Y, Miroshnichenko A (2017) Meta-optics with Mie resonances. Opt Photonics News 28(1):24–31

    Article  Google Scholar 

  4. Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339 (6125):1232009

    Article  PubMed  Google Scholar 

  5. Liu Z, Li Z, Liu Z, Cheng H, Liu W, Tang C, Tian J (2017) Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics 4(8):2061–2069

    Article  CAS  Google Scholar 

  6. Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Mortensen NA (2014) Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14(8):4499–4504

    Article  CAS  PubMed  Google Scholar 

  7. Ding F, Wang Z, He S, Shalaev VM, Kildishev AV (2015) Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. Acs Nano 9(4):4111–4119

    Article  CAS  PubMed  Google Scholar 

  8. Kim J, Choudhury S, DeVault C, Zhao Y, Kildishev AV, Shalaev VM, Alu A, Boltasseva A (2016) Controlling the polarization state of light with plasmonic metal oxide metasurface. ACS Nano 10(10):9326–9333

    Article  CAS  Google Scholar 

  9. Chen M, Chang L, Xiuqian T, Xiao X, Chen H (2017) Plasmonic quarter-wave plate with U-shaped nanopatches. Optik-International Journal for Light and Electron Optics 134:179–186

    Article  CAS  Google Scholar 

  10. Guo T, Argyropoulos C (2016) Broadband polarizers based on graphene metasurfaces. Opt Lett 41 (23):5592–5595

    Article  PubMed  Google Scholar 

  11. Wang X, Chen C, Pan L, Wang J (2016) A graphene-based Fabry-Pérot spectrometer in mid-infrared region. Sci Rep 6

  12. Huidobro PA, Maier SA, Pendry JB (2017) Tunable plasmonic metasurface for perfect absorption. EPJ Applied Metamaterials 4:6

    Article  Google Scholar 

  13. Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan PM, Kono J, Xu Q (2013) Excitation and active control of propagating surface plasmon polaritons in graphene. Nano Lett 13(8):3698–3702

    Article  CAS  PubMed  Google Scholar 

  14. Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Lukyanchuk B (2016) Optically resonant dielectric nanostructures. Science 354(6314):aag2472

    Article  PubMed  Google Scholar 

  15. Petrov M, Babicheva V, Baryshnikova K, Belov P (2015) Substrate-mediated zero backscattering from dielectric metasurfaces. arXiv:1511.08473

  16. Yan J, Liu P, Lin Z, Wang H, Chen H, Wang C, Yang G (2015) Directional Fano resonance in a silicon nanosphere dimer. Acs Nano 9(3):2968–2980

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J (2014) Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14(3):1394–1399

    Article  CAS  PubMed  Google Scholar 

  18. Dai Y, Cai H, Ding H, Ning Z, Pan N, Zhu H, Shi Q, Wang X (2015) Near-infrared quarter-waveplate with near-unity polarization conversion efficiency based on silicon nanowire array. Opt Express 23(7):8929–8938

    Article  CAS  PubMed  Google Scholar 

  19. Qiao P, Zhu L, Chew WC, Chang-Hasnain CJ (2015) Theory and design of two-dimensional high-contrast-grating phased arrays. Opt Express 23(19):24508–24524

    Article  CAS  PubMed  Google Scholar 

  20. Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A (2015) Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 6, 7069–7069

  21. Chen M, Cai J, Sun W, Chang L, Xiao X (2016) High-efficiency all-dielectric metasurfaces for broadband polarization conversion. Plasmonics 13(1):21–29

    Article  Google Scholar 

  22. Koenderink AF, Alù A, Polman A (2015) Nanophotonics: Shrinking light-based technology. Science 348(6234):516–521

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Z, Luo J, Song M, Yu H (2017) Polarization filtering and phase controlling metasurfaces based on a metal-insulator-metal grating. Plasmonics 12(6):797–1803

    Google Scholar 

  24. Zheng X, Xiao Z, Ling X (2018) A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics 13(1):287–291

    Article  CAS  Google Scholar 

  25. Chikhi N, Lisitskiy M, Papari G, Tkachenko V, Andreone A (2016) A hybrid tunable THz metadevice using a high birefringence liquid crystal. Sci Rep 6, 34536–34536

  26. Liu Z, Aydin K (2016) Enhanced infrared transmission through gold nanoslit arrays via surface plasmons in continuous graphene. Opt Express 24(24):27882–27889

    Article  CAS  PubMed  Google Scholar 

  27. Wu L, Yang Z, Cheng Y, Gong R, Zhao M, Zheng Y, Duan J, Yuan X (2014) Circular polarization converters based on bi-layered asymmetrical split ring metamaterials. Appl Phys A 116(2):643–648

    Article  CAS  Google Scholar 

  28. Wang T, Wang Y, Luo L, Wang L, Zhang Z (2017) Tunable circular dichroism of achiral graphene plasmonic structures. Plasmonics 12(3):829–833

    Article  CAS  Google Scholar 

  29. Chou J, Parameswaran L, Kimball B, Rothschild M (2016) Electrically switchable diffractive waveplates with metasurface aligned liquid crystals. Opt Express 24(21):24265–24273

    Article  CAS  PubMed  Google Scholar 

  30. Icenogle H, Platt BC, Wolfe WL (1976) Refractive indexes and temperature coefficients of germanium and silicon. Appl Opt 15(10):2348–2351

    Article  CAS  PubMed  Google Scholar 

  31. Cheng J, Ansari-Oghol-Beig D, Mosallaei H (2014) Wave manipulation with designer dielectric metasurfaces. Opt Lett 39(21):6285–6288

    Article  PubMed  Google Scholar 

  32. Zhao Y, Alù A (2011) Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 84(20):205428

    Article  Google Scholar 

  33. Kim J, Son H, Cho DJ, Geng B, Regan W, Shi S, Kim K, Zettl A, Shen YR, Wang F (2012) Electrical control of optical plasmon resonance with graphene. Nano Lett 12(11):5598–5602

    Article  CAS  PubMed  Google Scholar 

  34. Li Q, Tian Z, Zhang X, Xu N, Singh R, Gu J, Lv P, Luo LB, Zhang S, Han J et al (2015) Dual control of active graphene–silicon hybrid metamaterial devices. 146–153 90:146

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Basic Research Program of China (No. 2013CB328702) and the National Natural Science Foundation of China (NSFC) (Nos. 11374074 and 61308069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Owiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owiti, E., Yang, H., Liu, P. et al. Improving Efficiency and Birefringence of an All-Dielectric Metasurface Quarter-Wave Plate Using Graphene. Plasmonics 13, 2081–2089 (2018). https://doi.org/10.1007/s11468-018-0724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0724-4

Keywords

Navigation