Skip to main content
Log in

Fano Resonance Excited All-Optical XOR, XNOR, and NOT Gates with High Contrast Ratio

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have presented all-optical XOR, XNOR, and NOT gates using metal-insulator-metal (MIM)-coupled ring resonator. The performance of the device is evaluated by finite difference in time-domain (FDTD) method. The proposed gate utilizes a unique phenomenon of Fano resonance to excite logic OFF/ON state. Fano resonance has quite asymmetric resonance profile and the transmission spectrum of Fano profile abruptly drops to a minimum value at the resonance condition. Due to this unique resonance phenomenon, a large value of contrast ratio is obtained. The proposed XNOR gate offers a contrast ratio (C.R.) of 20.66 dB while XOR and NOT gates offer C.R. 12.8 and 18.8 dB respectively. The variation of contrast ratio is also studied against different input wavelength and it is reported that the obtained value of contrast ratio is an optimum value for the proposed structure. The device is compact sized with small dimension 0.31 λ02, where λ0 = 1.55 μm. The proposed device opens up the avenues for designing on-chip optical gates in the field of high-speed optical communication networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Neda Beheshti et. al., Optical packet buffers for backbone internet routers, IEEE/ACM Trans Networking, 18, 5, 2010, pp 1599–1609

    Article  Google Scholar 

  2. Stefan A. Maier, Plasmonics: The Promise of Highly Integrated Optical Devices, IEEE Journal Of Selected Topics In Quantum Electronics, Vol. 12, No. 6, November/December 2006 (pp. 1671–1677)

  3. Guoxi Wang, Hua Lu, Xueming Liu, Dong Mao, and Lina Duan, Tunable Multi-Channel Wavelength Demultiplexer based on MIM Plasmonic Nanodisk Resonators at Telecommunication Regime OSA Publishing, Optics Express Vol. 19, No. 4 February 2011, (Page no. 3513)

    Article  CAS  PubMed  Google Scholar 

  4. Zhu JH, Qi JW, Shum P, Guang Huang X (November 2011) A simple nanometeric plasmonic narrow-band filter structure based on metal–insulator–metal waveguide. IEEE Trans Nanotechnol 10(6):1371–1376

    Article  Google Scholar 

  5. Jonsson M (2003) Optical interconnection technology in switches, routers, and optical cross-connects SPIE Optical Networks Magazine 4(4):20–34

  6. Younis RM, Areed NFF, Obayya SSA (2014) Fully integrated AND and OR optical logic gates. IEEE Photon Technol Lett 26(19):1900–1903

    Article  Google Scholar 

  7. Kotb A, Zoiros KE (2013) Simulation of all-optical logic XNOR gate based on quantum-dot semiconductor optical amplifiers with amplified spontaneous emission. Opt Quantum Electron 45(II):1213–1221

    Article  CAS  Google Scholar 

  8. Salmanpour A, Mohammadnejad S, Bahrami A (2015) All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators. J Mod Opt 62:693–700

    Article  Google Scholar 

  9. Bao J, Xiao J, Fan L, Li X, Hai Y, Zhang T, Yang C (Oct. 2014) All optical NOR and NAND gates based on photonic crystal ring resonator. Opt Commun 329:109–112

    Article  CAS  Google Scholar 

  10. Jiang Y-C, Liu S-B, Zhang H-F, Kong X-K (Dec. 2014) Reconfigurable design of logic gates based on a two-dimensional photonic crystals waveguide structure. Opt, Commun 332:359–365

    Article  CAS  Google Scholar 

  11. Bao J, Xiao J, Fan L, Li X, Hai Y, Zhang T, Yang C (Oct. 2014) All-optical NOR and NAND gates based on photonic crystal ring resonator. Opt Commun 329:109–112

    Article  CAS  Google Scholar 

  12. Zafar R, Salim M (October 2015) Achievement of large normalized delay bandwidth product by exciting electromagnetic-induced transparency in plasmonic waveguide. IEEE J Quantum Electron 51(10):1–6

    Article  CAS  Google Scholar 

  13. Makarova M, Gong Y, Cheng S-L, Nishi Y, Yerci S, Li R, Negro LD, Vuckovic J (2010) Photonic crystal and plasmonic silicon-based light sources. IEEE Journal of Selected Topics in Quantum Electronics 16(1):132–140

    Article  CAS  Google Scholar 

  14. Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12(11):5784–5790

    Article  CAS  PubMed  Google Scholar 

  15. Shaik E h, Rangaswamy N (2015) Design of photonic crystal-based all-optical AND gate using T-shaped waveguide. J Mod Opt

  16. Rani P, Kalra Y, Sinha RK (2013) Realization of AND gate in Y shaped photonic crystal waveguide. Opt Commun 298–299:227–231

    Article  CAS  Google Scholar 

  17. Raghda M. Younis; Nihal F. F. Areed; Salah S. A. Obayya Fully integrated AND and OR optical logic gates IEEE Photon Technol Lett, Volume: 26 Issue: 19 Oct.1, 1 2014. Page(s): 1900–1903

  18. Zafar R, Salim M (2017) Analysis of asymmetry of Fano resonance in plasmonic metal-insulator-metal waveguide. ELSEVIER Photon Nanostruct Photon 23:1–6

    Article  Google Scholar 

  19. Li R, An H, Huang W, He Y (2018) Molybdenum oxide nanosheets meet ascorbic acid: tunable surface plasmon resonance and visual colorimetric detection at room temperature. Sensors Actuators B 259:59–63

    Article  CAS  Google Scholar 

  20. Huang W, Xie Z, Deng Y, He Y (January 2018) 3,3′,5,5′-tetramethylbenzidine-based quadruple-channel visual colorimetric sensor array for highly sensitive discrimination of serum antioxidants. Sensors Actuators B Chem 254:1057–1060

    Article  CAS  Google Scholar 

  21. Zafar R, Salim M (2014) Wideband Slow Light achievement in MIM Plasmonic waveguide by controlling Fano Resonance. ELSEVIER, Infrared Physics & Technology 67:25–29

    Article  CAS  Google Scholar 

  22. Fan S, Suh W, Joannopoulos JD (2003) Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A 20(3)

    Article  Google Scholar 

  23. Zafar R, Salim M (2015) Enhanced figure of merit in plasmonic refractive index sensor based on Fano resonance. IEEE Sensors J 15(11)

  24. Matsumoto A, Kuwata K, Matsushita A, Akahane K, Utaka K (2013) Numerical analysis of ultrafast performances of all-optical logic-gate devices integrated with InAs QD-SOA and ring resonators. IEEE J Quantum Electron 49(1):51–58

    Article  CAS  Google Scholar 

  25. Ooi KJA, Chu HS, Bai P, Ang LK (2014) Electro-optical graphene plasmonic logic gates. Opt Lett 39(6):1629–1632

    Article  CAS  PubMed  Google Scholar 

  26. Kiyanoosh Goudarzi, Ali Mir, Iman Chaharmahali and, Dariush Goudarzi, All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal Optics & Laser Technology Volume 78, Part B, April 2016, Pages 139–142

  27. Yuhei Ishizaka; Yuki Kawaguchi; Kunimasa Saitoh; Masanori Koshiba (2010) Design of all-optical XOR and AND logic gates based on multi-mode interference devices IEEE internal conference on Laser and Fiber-Optical Networks Modeling (LFNM)

  28. Rani P, Kalra Y, Sinha RK (2015) Design of all optical logic gates in photonic crystal waveguides. Optik 12:950–955

    Article  CAS  Google Scholar 

  29. Kakarla R, Venkitesh D (2016) Demonstration of optical header recognition for BPSK data using novel design of logic gates. Opt Commun 363:117–122

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rukhsar Zafar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, R., Nawaz, S. & Salim, M. Fano Resonance Excited All-Optical XOR, XNOR, and NOT Gates with High Contrast Ratio. Plasmonics 13, 1987–1994 (2018). https://doi.org/10.1007/s11468-018-0714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0714-6

Keywords

Navigation