Skip to main content
Log in

Enhancing Diamond Fluorescence via Optimized Nanorod Dimer Configurations

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Light extraction from silicon (SiV) and nitrogen (NV) vacancy diamond color centers coupled to plasmonic silver and gold nanorod dimers was numerically improved. Numerical optimization of the coupled dipolar emitter—plasmonic nanorod dimer configurations was realized to attain the highest possible fluorescence enhancement by simultaneously improving the color centers excitation and emission through antenna resonances. Conditional optimization was performed by setting a criterion regarding the minimum quantum efficiency of the coupled system (cQE) to minimize losses. By comparing restricted symmetric and allowed asymmetric dimers, the advantages of larger degrees of freedom achievable in asymmetric configurations was proven. The highest 2.59 × 108 fluorescence enhancement was achieved with 46.08% cQE via NV color center coupled to an asymmetric silver dimer. This is 3.17-times larger than the 8.19 × 107 enhancement in corresponding symmetric silver dimer configuration, which has larger 68.52% cQE. Among coupled SiV color centers the highest 1.04 × 108 fluorescence enhancement was achieved via asymmetric silver dimer with 37.83% cQE. This is 1.06-times larger than the 9.83 × 107 enhancement in corresponding symmetric silver dimer configuration, which has larger 57.46% cQE. Among gold nanorod coupled configurations the highest fluorescence enhancement of 4.75 × 104 was shown for SiV color center coupled to an asymmetric dimer with 21.8% cQE. The attained enhancement is 8.48- (92.42-) times larger than the 5.6 × 103 (5.14 × 102) fluorescence enhancement achievable via symmetric (asymmetric) gold nanorod dimer coupled to SiV (NV) color center, which is accompanied by 16.01% (7.66%) cQE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maze JR, Stanwix PL, Hodges JS, Hong S, Taylor JM, Cappellaro P, Jiang L, Gurudev Dutt MV, Togan E, Zibrov AS, Yacoby A, Walsworth RL, Lukin MD (2008) Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455:644–647

    Article  CAS  PubMed  Google Scholar 

  2. Benjamin SC, Lovett BW, Smith JM (2009) Prospects for measurement-based quantum computing with solid state spins. Laser Photonics Rev 3:556–574

    Article  CAS  Google Scholar 

  3. Aharonovich I, Greentree AD, Prawer S (2011) Diamond photonics. Nat Photonics 5:397–405

    Article  CAS  Google Scholar 

  4. Bernien H, Hensen B, Pfaff W, Koolstra G, Blok MS, Robledo L, Taminiau TH, Markham M, Twitchen DJ, Childress L, Hanson R (2013) Heralded entanglement between solid-state qubits separated by three metres. Nature 497:86–90

    Article  CAS  PubMed  Google Scholar 

  5. Manson NB, Harrison JP, Sellars MJ (2006) Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys Rev B 74:104303

    Article  CAS  Google Scholar 

  6. Maze JR, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E, Lukin MD (2011) Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. New J Phys 13:025025

    Article  CAS  Google Scholar 

  7. Bayat K, Choy J, Baroughi MF, Meesala S, Loncar M Efficient, uniform, and large area microwave magnetic coupling to NV centers in diamond using double split-ring resonators. Nano Lett 14:1208–1213

    Article  CAS  PubMed  Google Scholar 

  8. Gali A, Maze JR (2013) Ab initio study of the split silicon-vacancy defect in diamond: electronic structure and related properties. Phys Rev B 88:235205

    Article  CAS  Google Scholar 

  9. Rogers LJ, Jahnke KD, Doherty MW, Dietrich A, McGuinness LP, Müller C, Teraji T, Sumiya H, Isoya J, Manson NB, Jelezko F (2014) Electronic structure of the negatively charged silicon-vacancy center in diamond. Phys Rev B 89:235101

    Article  CAS  Google Scholar 

  10. Rogers LJ, Jahnke KD, Teraji T, Marseglia L, Müller C, Naydenov B, Schauffert H, Kranz C, Isoya J, McGuinness LP, Jelezko F (2014) Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun 5:4739

    Article  CAS  PubMed  Google Scholar 

  11. Vlasov II, Shiryaev AA, Rendler T, Steinert S, Lee SY, Antonov D, Vörös M, Jelezko F, Fisenko AV, Semjonova LF, Biskupek J, Kaiser U, Lebedev OI, Sildos I, Hemmer PR, Konov VI, Gali A, Wrachtrupm (2014) Molecular-sized fluorescent nanodiamonds. J Nat Nanotechnol 9:54–58

    Article  CAS  Google Scholar 

  12. Davis TJ, Gómez DE (2017) Colloquium: an algebraic model of localized surface plasmons and their interactions. Rev Mod Phys 89:011003

    Article  Google Scholar 

  13. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  14. Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensor Actuat B Chem 195:332–351

    Article  CAS  Google Scholar 

  15. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–828

    Article  CAS  Google Scholar 

  16. Pelton M (2015) Modified spontaneous emission in nanophotonic structures. Nat Photonics 9:427–435

    Article  CAS  Google Scholar 

  17. Yang Y, Zhen B, Hsu CW, Miller OD, Joannopoulos JD, Soljačić M (2016) Optically thin metallic films for high-radiative-efficiency plasmonics. Nano Lett 16:4110–4117

    Article  CAS  PubMed  Google Scholar 

  18. Tame MS, McEnery KR, Özdemir SK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9:329–340

    Article  CAS  Google Scholar 

  19. Taminiau TH, Stefani FD, van Hulst NF (2008) Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt Express 16(14):10858–10866

    Article  PubMed  Google Scholar 

  20. Taminiau TH, Stefani FD, van Hulst NF (2008) Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency. New J Phys 10:105005

    Article  CAS  Google Scholar 

  21. Hoang TB, Akselrod GM, Argyropoulos C, Huang J, Smith DR, Mikkelsen MH (2015) Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat Commun 6:7788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dorfmüller J, Vogelgesang R, Khunsin W, Rockstuhl C, Etrich C, Kern K (2010) Plasmonic nanowire antennas: experiment, simulation, and theory. Nano Lett 10:3596–3603

    Article  CAS  PubMed  Google Scholar 

  23. Hancu IM, Curto AG, Castro-Lopez M, Kuttge M, van Hulst NF (2014) Multipolar interference for directed light emission. Nano Lett 14:166–171

    Article  CAS  PubMed  Google Scholar 

  24. Mahmoud KR, Hussein M, Hameed MFO, Obayya SSA (2017) Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission. J Opt Soc Am B 34(10):2041–2049

    Article  CAS  Google Scholar 

  25. Muskens OL, Giannini V, Sánchez-Gil JA, Gómez Rivas J (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett 7:2871–2875

    Article  CAS  PubMed  Google Scholar 

  26. Rogobete L, Kaminski F, Agio M, Sandoghdar V (2007) Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt Lett 32:1623–1625

    Article  PubMed  Google Scholar 

  27. Toroghi S, Kik PG (2012) Cascaded field enhancement in plasmon resonant dimer nanoantennas compatible with two-dimensional nanofabrication methods. Appl Phys Lett 101:013116

    Article  CAS  Google Scholar 

  28. Duan H, Fernández-Domínguez AI, Bosman M, Maier SA, Yang JKW (2012) Nanoplasmonics: classical down to the nanometer scale. Nano Lett 12:1683–1689

    Article  CAS  PubMed  Google Scholar 

  29. Andersen SKH, Khumar S, Bozhevolnyi SI (2017) Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna. Nano Lett 17:3889–3895

    Article  CAS  PubMed  Google Scholar 

  30. El-Toukhy YM, Hussein M, Hameed MFO, Obayya SSA. (2017) Plasmonics 1-8

  31. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658

    Article  CAS  PubMed  Google Scholar 

  32. Abb M, Wang Y, Albella P, de Groot CH, Aizpurua J, Muskens OL (2012) Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas. ACS Nano 6:6462–6470

    Article  CAS  PubMed  Google Scholar 

  33. Aharonovich I, Englund D, Toth M (2016) Solid-state single-photon emitters. Nat Photonics 10:631–641

    Article  CAS  Google Scholar 

  34. Choy JT, Hausmann BJM, Babinec TM, Bulu I, Khan M, Maletinsky P, Yacoby A, Lončar M (2011) Enhanced single-photon emission from a diamond–silver aperture. Nat Photonics 5:738–743

    Article  CAS  Google Scholar 

  35. de Leon NP, Shields BJ, Yu CL, Englund DE, Akimov AV, Lukin MD, Park H (2012) Tailoring light-matter interaction with a nanoscale plasmon resonator. Phys Rev Lett 108:226803

    Article  CAS  PubMed  Google Scholar 

  36. Kolesov R, Grotz B, Balasubramanian G, RStöhr RJ, Nicolet AAL, Hemmer PR, Jelezko F, Wrachtrup J (2009) Wave–particle duality of single surface plasmon polaritons. Nat Phys 5:470–474

    Article  CAS  Google Scholar 

  37. Wolf SA, Rosenberg I, Rapaport R, Bar-Gill N (2015) Purcell-enhanced optical spin readout of nitrogen-vacancy centers in diamond. Phys Rev B 92:235410

    Article  CAS  Google Scholar 

  38. Szenes A, Bánhelyi B, Szabó LZ, Szabó G, Csendes T, Csete M (2017) Enhancing diamond color center fluorescence via optimized plasmonic nanorod configuration. Plasmonics 12:1263–1280

    Article  CAS  Google Scholar 

  39. Kumar S, Huck A, Chen Y, Andersen UL (2013) Coupling of a single quantum emitter to end-to-end aligned silver nanowires. Appl Phys Lett 102:103106

    Article  CAS  Google Scholar 

  40. Cheng S, Song J, Wang Q, Liu J, Li H, Zhang B (2015) Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond. Appl Phys Lett 107:211905

    Article  CAS  Google Scholar 

  41. Schell AW, Kewes G, Hanke T, Leitenstorfer A, Bratschitsch R, Benson O, Aichele T (2011) Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. Opt Express 19:79147920

    Article  CAS  Google Scholar 

  42. Hui YY, Lu YC, Su LJ, Fang CY, Hsu JH, Chang HC (2013) Tip-enhanced sub-diffraction fluorescence imaging of nitrogen-vacancy centers in nanodiamonds. Appl Phys Lett 102_013102

  43. Csendes T, Garay BM, Bánhelyi B (2006) A verified optimization technique to locate chaotic regions of Hénon systems. J Glob Optim 35:145–160

    Article  Google Scholar 

  44. Csendes T, Pál L, Sendín JOH, Banga JR (2008) The GLOBAL optimization method revisited. Optim Lett 2:445–454

    Article  Google Scholar 

  45. Geddes CD (2017) Surface plasmon enhanced, coupled and controlled fluorescence. John Wiley & Sons, Inc., Hoboken

    Book  Google Scholar 

  46. Maliwal BP, Malicka J, Ignacy G, Gryczynski Z, Lakowicz JR (2003) Fluorescence properties of labeled proteins near silver colloid surfaces. Biopolymers 70:585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Mária Csete acknowledges that the project was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The authors would like to thank Dávid Vass and Géza Veszprémi for figure preparation.

Funding

The research was supported by National Research, Development and Innovation Office-NKFIH through project “Optimized nanoplasmonics” K116362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Csete.

Electronic supplementary material

ESM 1

(PDF 827 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szenes, A., Bánhelyi, B., Csendes, T. et al. Enhancing Diamond Fluorescence via Optimized Nanorod Dimer Configurations. Plasmonics 13, 1977–1985 (2018). https://doi.org/10.1007/s11468-018-0713-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0713-7

Keywords

Navigation