Skip to main content
Log in

Efficient and Directional Excitation of Surface Plasmon Polaritons by Oblique Incidence on Metallic Ridges

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

For many years, the search for efficient surface plasmon polariton (SPP) excitation mechanisms has been a recurring matter in the development of compact plasmonic devices. In this work, we excited SPPs illuminating a subwavelength metallic ridge with a focused spot to characterize the coupling efficiency by varying the incidence angle of the excitation beam from − 50 to 50°. The intensity distribution of the excited SPPs was measured using leakage radiation microscopy to determine the relative coupling efficiency in the wavelength interval from 740 to 840 nm. We modeled the excitation efficiency as a function of the incidence angle using a simple analytical diffraction model. Two ridges of different width (200 and 500 nm) were used to compare results and validate the model. The experimental results show a higher coupling efficiency at oblique incidence, where the coupling was enhanced by factors of 2× for the 500-nm-wide ridge, and 3× for the 200-nm-wide ridge, as well as unidirectional SPP excitation. The experimental results are in good agreement with the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Phys 23(12):2135–2136

    CAS  Google Scholar 

  2. Radko IP, Bozhevolnyi SI, Brucoli G, Martín-Moreno L, García-Vidal FJ, Boltasseva A (2008) Efficiency of local surface plasmon polariton excitation on ridges. Phys Rev B 78(11):115115

    Article  CAS  Google Scholar 

  3. He M-D, Liu J-Q, Gong Z-Q, Li S, Luo Y-F (2012) Directional excitation of surface plasmon polaritons in structure of subwavelength metallic holes. Opt Commun 285(2):182–185. https://doi.org/10.1016/j.optcom.2011.09.020

    Article  CAS  Google Scholar 

  4. Radko I, Evlyukhin A, Boltasseva A, Bozhevolnyi S (2008) Refracting surface plasmon polaritons with nanoparticle arrays. Opt Express 16(6):3924–3930. https://doi.org/10.1364/OE.16.003924

    Article  PubMed  Google Scholar 

  5. Pisano E, Coello V, Garcia-Ortiz CE, Chen Y, Beerman J, Bozhevolnyi SI (2016) Plasmonic channel waveguides in random arrays of metallic nanoparticles. Opt Express 24(15):17080–17089. https://doi.org/10.1364/OE.24.017080

    Article  CAS  PubMed  Google Scholar 

  6. Xu T, Zhao Y, Gan D, Wang C, Du C, Luo X (2008) Directional excitation of surface plasmons with subwavelength slits. Appl Phys Lett 92(10):101501. https://doi.org/10.1063/1.2894183

    Article  CAS  Google Scholar 

  7. Smith CLC, Thilsted AH, Garcia-Ortiz CE, Radko IP, Marie R, Jeppesen C, Vannahme C, Bozhevolnyi SI, Kristensen A (2014) Efficient excitation of channel plasmons in tailored, UV-lithography-defined V-grooves. Nano Lett 14(3):1659–1664. https://doi.org/10.1021/nl5002058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han Z, Garcia-Ortiz CE, Radko IP, Bozhevolnyi SI (2013) Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides. Opt Express 38(6):875–877

    CAS  Google Scholar 

  9. Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002) Two-dimensional optics with surface plasmon polaritons. Appl Phys 81(10):1762–1764

    CAS  Google Scholar 

  10. Klick A, de la Cruz S, Lemke C, Großmann M, Beyer H, Fiutowski J, Rubahn H-G, Méndez ER, Bauer M (2016) Amplitude and phase of surface plasmon polaritons excited at a step edge. Appl Phys B Lasers Opt 122(4):79

    Article  CAS  Google Scholar 

  11. Garcia-Ortiz CE, Pisano E, Coello V (2017) Description and characterization of plasmonic Gaussian beams. J Opt 19(8):085001. https://doi.org/10.1088/2040-8986/aa7724

    Article  Google Scholar 

  12. Drezet A, Stepanov A, Hohenau A, Steinberger B, Galler N, Ditlbacher H, Leitner A, Aussenegg F, Krenn J, Gonzalez M, Weeber JC (2006) Surface plasmon interference fringes in back-reflection. Europhys Lett 74(4):693–698. https://doi.org/10.1209/epl/i2006-10027-7

    Article  CAS  Google Scholar 

  13. Liu H, Lalanne P, Yang X, Hugonin JP (2008) Surface plasmon generation by subwavelength isolated objects. IEEE J Sel Top Quantum Electron 14(6):1522–1529

    Article  CAS  Google Scholar 

  14. Kim H, Lee B (2009) Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination. Plasmonics 4(6):153–159. https://doi.org/10.1007/s11468-009-9086-2

    Article  Google Scholar 

  15. Hu H, Zeng X, Zhao Y, Li J, Song H, Song G, Xu Y, Gan Q (2016) Unidirectional coupling of surface plasmon polaritons by a single slit on a metal substrate. IEEE Photon Technol Lett 28(21):2395–2398. https://doi.org/10.1109/LPT.2016.2596782

    Article  Google Scholar 

  16. Sonnefraud Y, Kerman S, Martino GD, Lei DY, Maier SA (2012) Directional excitation of surface plasmon polaritons via nanoslits under varied incidence observed using leakage radiation microscopy. Opt Express 20(5):4893–4902. https://doi.org/10.1364/OE.20.004893

    Article  PubMed  Google Scholar 

  17. Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164(1–4):111–117. https://doi.org/10.1016/S0169-4332(00)00352-4

    Article  CAS  Google Scholar 

  18. Drezet A, Hohenau A, Koller D, Stepanov A, Ditlbacher H, Steinberger B, Aussenegg FR, Leitner A, Krenn JR (2008) Leakage radiation microscopy of surface plasmon polaritons. Mater Sci Eng B 149(3):220–229. https://doi.org/10.1016/j.mseb.2007.10.010

    Article  CAS  Google Scholar 

  19. Hassan K, Bouhelier A, Bernardin T, Colas-des-Francs G, Weeber JC, Dereux A, Espiau de Lamaestre R (2013) Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides. Phys Rev B 87(19):195428

    Article  CAS  Google Scholar 

  20. Umul YZ (2011) Babinet’s principle in the Fraunhofer diffraction by a finite thin wire. Optik 122(16):1434–1436. https://doi.org/10.1016/j.ijleo.2010.09.023

    Article  CAS  Google Scholar 

  21. Zentgraf T, Meyrath TP, Seidel A, Kaiser S, Giessen H, Rockstuhl C, Lederer F (2007) Babinet’s principle for optical frequency metamaterials and nanoantennas. Phys Rev B 76(3):033407. https://doi.org/10.1103/PhysRevB.76.033407

    Article  CAS  Google Scholar 

  22. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

V.C. and C.E.G.-O. acknowledge the financial support from CONACYT Basic Scientific Research Grants Nos. 250719 and 252621.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Pisano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisano, E., Garcia-Ortiz, C.E., Armenta-Monzon, F. et al. Efficient and Directional Excitation of Surface Plasmon Polaritons by Oblique Incidence on Metallic Ridges. Plasmonics 13, 1935–1940 (2018). https://doi.org/10.1007/s11468-018-0708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0708-4

Keywords

Navigation