Skip to main content
Log in

Optothermally Controlled Charge Transfer Plasmons in Au-Ge2Sb2Te5 Core-Shell Dimers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Functional and reversible plasmonic resonances across the visible and near-infrared spectrum have opened new avenues for developing advanced next-generation nanophotonic devices. In this study, by using optothermally controlled phase-change material (PCM) for plasmonic nanostructures, we successfully induced highly tunable charge transfer plasmon (CTP) resonance modes. To this end, we have chosen a two-member dimer assembly consisting of gold cores and Ge2Sb2Te5 (GST) shells in distant, touching, and overlapping regimes. We show that switching between amorphous (dielectric) and crystalline (conductive) phases of GST allows for achieving tunable dipolar and CTP resonances and enables an effective interplay between these modes along the near-infrared spectrum. By analyzing electromagnetically calculated spectral responses for the dimer antenna in tunneling and direct charge transfer regimes, we confirmed that the induced CTPs in touching and overlapping regimes are highly controllable and pronounced in comparison to the quantum tunneling regime. We also use the precise, fast, and controllable switching between dipolar and CTP resonant modes to develop a telecommunication switch based on a simple metallodielectric dimer. The proposed structures can help designing optothermally controlled devices without morphological variations in the geometry of the design, and having strong potential for advanced plasmon modulation and fast data routing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barnes WL (2006) Surface plasmon–polariton length scales: a route to sub-wavelength optics. J Opt A Pure Appl Opt 8(4):S87–S93. https://doi.org/10.1088/1464-4258/8/4/S06

    Article  Google Scholar 

  2. Gerislioglu B, Ahmadivand A, Pala N (2017) Functional quadrumer clusters for switching between Fano and charge transfer plasmons. IEEE Photon Technol Lett 29(24):2226–2229. https://doi.org/10.1109/LPT.2017.2772041

    Article  Google Scholar 

  3. Gerislioglu B, Ahmadivand A, Pala N (2017) Single- and multimode beam propagation through an optothermally controllable Fano clusters-mediated waveguide. IEEE J Lightw Technol 35(22):4961–4966. https://doi.org/10.1109/JLT.2017.2766125

    Article  Google Scholar 

  4. Abril I, Garcia-Molina R, Denton CD, Pérez-Pérez FJ, Arista NR (1998) Dielectric description of wakes and stopping powers in solids. Phys Rev A 58(1):357–366. https://doi.org/10.1103/PhysRevA.58.357

    Article  CAS  Google Scholar 

  5. Gerislioglu B, Ahmadivand A, Pala N (2017) Hybridized plasmons in graphene nanorings for extreme nonlinear optics. Opt Maters 73:729–735. https://doi.org/10.1016/j.optmat.2017.09.042

    Article  CAS  Google Scholar 

  6. Ahmadivand A, Gerislioglu B, Pala N (2017) Graphene optical switch based on charge transfer plasmons. Phys Status Solidi RRL 11(11):1700285. https://doi.org/10.1002/pssr.201700285

    Article  CAS  Google Scholar 

  7. Ahmadivand A, Sinha R, Karabiyik M, Vabbina PK, Gerislioglu B, Kaya S, Pala N (2017) Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators. J Nanopart Res 19(1):3. https://doi.org/10.1007/s11051-016-3696-3

    Article  CAS  Google Scholar 

  8. Néstor PL, Elías AL, Berkdemir A, Castro-Beltran A, Gutiérrez HR, Feng S, Lv R, Hayashi T, López-Urías F, Ghosh S, Muchharla B (2013) Photosensor device based on few-layered WS2 films. Adv Funct Mater 23:5511–5517

    Article  Google Scholar 

  9. Byers CP, Zhang H, Swearer DF, Yorulmaz M, Hoener BS, Huang D, Hoggard A, Chang WS, Mulvaney P, Ringe E, Halas NJ, Nordlander P, Link S, Landes CF (2015) From tunable core-shell nanoparticles to plasmonic drawbridges: active control of nanoparticle optical properties. Sci Adv 1(11):e1500988. https://doi.org/10.1126/sciadv.1500988

    Article  PubMed  PubMed Central  Google Scholar 

  10. Novo C, Funston AM, Mulvaney P (2008) Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol 3(10):598–602. https://doi.org/10.1038/nnano.2008.246

    Article  CAS  PubMed  Google Scholar 

  11. Dondapati SK, Ludemann M, Muller R, Schwieger S, Schwemer A, Handel B, Kwiatkowski D, Djiango M, Runge E, Klar TA (2012) Voltage-induced adsorbate damping of single gold nanorod plasmons in aqueous solution. Nano Lett 12(3):1247–1252. https://doi.org/10.1021/nl203673g

    Article  CAS  PubMed  Google Scholar 

  12. Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg JJ (2012) Revealing the quantum regime in tunnelling plasmonics. Nature 491(7425):574–577. https://doi.org/10.1038/nature11653

    Article  CAS  PubMed  Google Scholar 

  13. Marinica DC, Kazansky AK, Nordlander P, Aizpurua J, Borisov AG (2012) Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett 12(3):1333–1339. https://doi.org/10.1021/nl300269c

    Article  CAS  PubMed  Google Scholar 

  14. Tame MS, McEnery KR, Özdemir ŞK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9(6):329–340. https://doi.org/10.1038/nphys2615

    Article  CAS  Google Scholar 

  15. Tan SF, Wu L, Yang JK, Bai P, Bosman M, Nijhuis CA (2014) Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343(6178):1496–1499. https://doi.org/10.1126/science.1248797

    Article  CAS  PubMed  Google Scholar 

  16. Ahmadivand A, Gerislioglu B, Pala N (2017) Azimuthally and radially excited charge transfer plasmon and Fano lineshapes in conductive sublayer-mediated nanoassemblies. J Opt Am A 34(11):2052–2056. https://doi.org/10.1364/JOSAA.34.002052

    Article  CAS  Google Scholar 

  17. Ahmadivand A, Sinha R, Gerislioglu B, Karabiyik M, Pala N, Shur M (2016) Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies. Opt Lett 41(22):5333–5336. https://doi.org/10.1364/OL.41.005333

    Article  CAS  PubMed  Google Scholar 

  18. Gerislioglu B, Ahmadivand A, Karabiyik M, Sinha R, Pala N (2017) VO2-based reconfigurable antenna platform with addressable microheater matrix. Adv Electron Mater 3(9):1700170. https://doi.org/10.1002/aelm.201700170

    Article  CAS  Google Scholar 

  19. Ahmadivand A, Gerislioglu B, Pala N (2017) Active control over the interplay the dark and hidden sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells. J Phys Chem C 121(36):19966–19974. https://doi.org/10.1021/acs.jpcc.7b05890

    Article  CAS  Google Scholar 

  20. Kumar M, Vora-ud A, Seetawan T, Han JG (2016) Study of pulsed-DC sputtering induced Ge2Sb2Te5 thin films using facile thermoelectric measurement. Mater Des 98:254–261. https://doi.org/10.1016/j.matdes.2016.03.046

    Article  CAS  Google Scholar 

  21. Vora-ud A, Rittiruam M, Kumar M, Han JG, Seetawan T (2016) Molecular simulation for thermoelectric properties of c-axis oriented hexagonal GeSbTe model clusters. Mater Des 89:957–963. https://doi.org/10.1016/j.matdes.2015.10.061

    Article  CAS  Google Scholar 

  22. Ahmadivand A, Gerislioglu B, Sinha R, Karabiyik M, Pala N (2017) Optical switching using transition from dipolar to charge transfer plasmon modes in Ge2Sb2Te5 bridged metallodielectric dimers. Sci Rep 7:42807. https://doi.org/10.1038/srep42807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar M, Vora-ud A, Seetawan T, Han JG (2016) Enhancement in thermoelectric properties of cubic Ge2Sb2Te5 thin films by introducing structural disorder. Energy Technol 4(3):375–379. https://doi.org/10.1002/ente.201500296

    Article  CAS  Google Scholar 

  24. Ahmadivand A, Gerislioglu B, Pala N (2017) Thermally controllable multiple high harmonics generation by phase-change materials-mediated Fano clusters. arXiv preprint arXiv: 1712.03802

  25. Sebastian A, Le Gallo M, Krebs D (2014) Crystal growth within a phase change memory cell. Nat Commun 5:4317

    Article  Google Scholar 

  26. Bakan G, Gerislioglu B, Dirisaglik F, Jurado Z, Sullivan L, Dana A, Lam C, Gokirmak A, Silva H (2016) Extracting the temperature distribution on a phase-change memory cell during crystallization. J Appl Phys 120(16):164504. https://doi.org/10.1063/1.4966168

    Article  CAS  Google Scholar 

  27. Palik ED (1998) Handbook of optical constants of solids. Academic press, San Diego

    Google Scholar 

  28. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  29. Shportko K, Kremers S, Woda M, Lencer D, Robertson J, Wuttig M (2008) Resonant bonding in crystalline phase-change materials. Nat Mater 7(8):653–658. https://doi.org/10.1038/nmat2226

    Article  CAS  PubMed  Google Scholar 

  30. Wu L, Duan H, Bai P, Bosman M, Yang JK, Li E (2013) Fowler–Nordheim tunnelling induced charge transfer plasmons between nearly touching nanoparticles. ACS Nano 7(1):707–716. https://doi.org/10.1021/nn304970v

    Article  CAS  PubMed  Google Scholar 

  31. Ahmadivand A, Gerislioglu B, Sinha R, Vabbina PK, Karabiyik M, Pala N (2017) Excitation of terahertz charge transfer plasmons in metallic fractal structures. J Infrared Milli Terahz Waves 38(8):992–1003. https://doi.org/10.1007/s10762-017-0400-3

    Article  CAS  Google Scholar 

  32. Miroshnichenko AE, Kivshar YS (2012) Fano resonances in all-dielectric oligomers. Nano Lett 12(12):6459–6463. https://doi.org/10.1021/nl303927q

    Article  CAS  PubMed  Google Scholar 

  33. Chong KE, Hopkins B, Staude I, Miroshnichenko AE, Dominguez J, Decker M, Neshev DN, Brener Il, Kivshar YS (2014) Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10(10):1985–1990. https://doi.org/10.1002/smll.201303612

    Article  CAS  PubMed  Google Scholar 

  34. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903. https://doi.org/10.1021/nl049681c

    Article  CAS  Google Scholar 

  35. Wen F, Zhang Y, Gottheim S, King NS, Zhang Y, Nordlander P, Halas NJ (2015) Charge transfer plasmons: optical frequency conductances and tunable infrared resonances. ACS Nano 9(6):6428–6435. https://doi.org/10.1021/acsnano.5b02087

    Article  CAS  PubMed  Google Scholar 

  36. Pérez-González O, Zabala N, Borisov AG, Halas NJ, Nordlander P, Aizpurua J (2010) Optical spectroscopy of conductive junctions in plasmonic cavities. Nano Lett 10(8):3090–3095. https://doi.org/10.1021/nl1017173

    Article  CAS  PubMed  Google Scholar 

  37. Jeans SJH (1908) The mathematical theory of electricity and magnetism. Cambridge University

  38. Ahmadivand A, Gerislioglu B, Pala N (2017) Large-modulation-depth polarization-sensitive plasmonic toroidal terahertz metamaterial. IEEE Photon Technol Lett 29(21):1860–1863. https://doi.org/10.1109/LPT.2017.2754339

    Article  CAS  Google Scholar 

  39. Chang W–S, Lassiter JB, Swanglap P, Sobhani H, Khatua S, Nordlander P, Halas NJ, Link S (2012) A plasmonic Fano switch. Nano Lett 12(9):4977–4982. https://doi.org/10.1021/nl302610v

    Article  CAS  PubMed  Google Scholar 

  40. Zheng F, Chen Z, Zhang J (1999) A finite-difference time-domain method without the Courant stability conditions. IEEE Microw Guided Wave Lett 9(11):441–443. https://doi.org/10.1109/75.808026

    Article  Google Scholar 

  41. Lorentz HA (1916) Theory of electrons. Teubner, Leipzig Chap. 4

    Google Scholar 

  42. Aspnes DE (1916) Local-field effects and effective-medium theory: a microscopic perspective. Am J Phys 50:704–709

    Article  Google Scholar 

  43. Chen X, Chen Y, Yan M, Qiu M (2012) Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6(3):2550–2557. https://doi.org/10.1021/nn2050032

    Article  CAS  PubMed  Google Scholar 

  44. Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev 7(2):171–187. https://doi.org/10.1002/lpor.201200003

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Army Research Laboratory (ARL) Multiscale Multidisciplinary Modeling of Electronic Materials (MSME) Collaborative Research Alliance (CRA) (Grant No. W911NF-12-2-0023, Program Manager: Dr. Meredith L. Reed).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Gerislioglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerislioglu, B., Ahmadivand, A. & Pala, N. Optothermally Controlled Charge Transfer Plasmons in Au-Ge2Sb2Te5 Core-Shell Dimers. Plasmonics 13, 1921–1928 (2018). https://doi.org/10.1007/s11468-018-0706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0706-6

Keywords

Navigation