Skip to main content
Log in

Plasmonic Au-MoO3 Colloidal Nanoparticles by Reduction of HAuCl4 by Blue MoOx Nanosheets and Observation of the Gasochromic Property

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Defective colloids of blue MoOx nanosheets were prepared by anodizing exfoliation method in water. This colloidal solution exhibits an optical plasmonic absorption band in the infrared region at about 760 nm. Merely mixing HAuCl4 solution with the MoOx leads to loss of the blue color, decaying of 760 nm plasmonic peak and simultaneous formation of the gold plasmon absorption peak at 550–570 nm. Some spectral variations in gold plasmonic peak and MoOx optical band gap were observed for Mo:Au ratio of 10:1, 20:1, 30:1, and 40:1. The size of the gold nanoparticles was in the 5–6 nm range with fcc crystalline structure. X-ray photoelectron spectroscopy (XPS) revealed that the initial solution contains Mo5+ states and hydroxyl groups, which after reduction, hydroxyl groups are eliminated and the Mo5+ states converted to Mo6+. The obtained Au-MoO3 colloids have a gasochromic property in which they are colored back to blue in the presence of hydrogen gas and the molybdenum oxide absorption peak recovered again. Furthermore, it was observed that both gold and Mo oxide plasmonic peaks redshift by insertion of hydrogen gas which is attributed to change in solution refractive index and formation of defect concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294. https://doi.org/10.1002/anie.200904359

    Article  CAS  Google Scholar 

  2. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228. https://doi.org/10.1007/s10103-007-0470-x

    Article  PubMed  Google Scholar 

  3. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586. https://doi.org/10.1021/ar7002804

    Article  CAS  PubMed  Google Scholar 

  4. Lin CAJ, Yang TY, Lee CH, Huang SH, Sperling RA, Zanella M, Li JK, Shen JL, Wang HH, Yeh HI, Parak WJ, Chang WH (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3(2):395–401. https://doi.org/10.1021/nn800632j

    Article  CAS  PubMed  Google Scholar 

  5. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802. https://doi.org/10.1039/C39940000801

    Article  CAS  Google Scholar 

  6. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  Google Scholar 

  7. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426. https://doi.org/10.1021/jp9917648

    Article  CAS  Google Scholar 

  8. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179. https://doi.org/10.1126/science.1077229

    Article  CAS  PubMed  Google Scholar 

  9. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. https://doi.org/10.1039/df9511100055

    Article  Google Scholar 

  10. Cai H, Yao P (2014) Gold nanoparticles with different amino acid surfaces: serum albumin adsorption, intracellular uptake and cytotoxicity. Colloids Surf B: Biointerfaces 123:900–906. https://doi.org/10.1016/j.colsurfb.2014.10.042

    Article  CAS  PubMed  Google Scholar 

  11. Scarabelli L, Sánchez-Iglesias A, Pérez-Juste J, Liz-Marzán LM (2015) A “tips and tricks” practical guide to the synthesis of gold nanorods. J Phys Chem Lett (6):4270−4279. ACS Publications

  12. Murdoch M, Waterhouse G, Nadeem M, Metson J, Keane M, Howe R, Llorca J, Idriss H (2011) The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat Chem 3(6):489–492. https://doi.org/10.1038/nchem.1048

    Article  CAS  PubMed  Google Scholar 

  13. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am Chem Soc 126(15):4943–4950. https://doi.org/10.1021/ja0315199

    Article  CAS  PubMed  Google Scholar 

  14. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44(48):7852–7872. https://doi.org/10.1002/anie.200500766

    Article  CAS  Google Scholar 

  15. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870. https://doi.org/10.1021/jp0516846

    Article  CAS  PubMed  Google Scholar 

  16. Bastús NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27(17):11098–11105. https://doi.org/10.1021/la201938u

    Article  CAS  PubMed  Google Scholar 

  17. Henglein A, Meisel D (1998) Radiolytic control of the size of colloidal gold nanoparticles. Langmuir 14(26):7392–7396. https://doi.org/10.1021/la981278w

    Article  CAS  Google Scholar 

  18. Langille MR, Personick ML, Zhang J, Mirkin CA (2012) Defining rules for the shape evolution of gold nanoparticles. J Am Chem Soc 134(35):14542–14554. https://doi.org/10.1021/ja305245g

    Article  CAS  PubMed  Google Scholar 

  19. Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110(9):3990–3994. https://doi.org/10.1021/jp0570972

    Article  CAS  PubMed  Google Scholar 

  20. Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, Rodríguez-González B, García De Abajo FJ, Liz-Marzán LM (2006) Synthesis and optical properties of gold nanodecahedra with size control. Adv Mater 18(19):2529–2534. https://doi.org/10.1002/adma.200600475

    Article  CAS  Google Scholar 

  21. Senthil Kumar P, Pastoriza-Santos I, Rodríguez-González B, De Abajo FJG, Liz-Marzán LM (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19(1):015606. https://doi.org/10.1088/0957-4484/19/01/015606

    Article  CAS  PubMed  Google Scholar 

  22. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  23. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102(30):10451–10453. https://doi.org/10.1073/pnas.0502848102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Wang Z, Huang B, Yang K, Zhang X, Qin X, Dai Y (2010) Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet. Appl Surf Sci 257(1):172–175. https://doi.org/10.1016/j.apsusc.2010.06.058

    Article  CAS  Google Scholar 

  25. Ma Y, Jia Y, Wang L, Yang M, Bi Y, Qi Y (2016) Exfoliated thin Bi 2 MoO 6 nanosheets supported on WO 3 electrode for enhanced photoelectrochemical water splitting. Appl Surf Sci 390:399–405. https://doi.org/10.1016/j.apsusc.2016.08.116

    Article  CAS  Google Scholar 

  26. Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275. https://doi.org/10.1038/nchem.1589

    Article  Google Scholar 

  27. Wang F, Ueda W, Xu J (2012) Detection and measurement of surface electron transfer on reduced molybdenum oxides (MoOx) and catalytic activities of Au/MoOx. Angew Chem Int Ed 51(16):3883–3887. https://doi.org/10.1002/anie.201105922

    Article  CAS  Google Scholar 

  28. Bai H, Yi W, Li J, Xi G, Li Y, Yang H, Liu J (2016) Direct growth of defect-rich MoO3−xultrathin nanobelts for efficiently catalyzed conversion of isopropyl alcohol to propylene under visible light. J Mater Chem A 4(5):1566–1571. https://doi.org/10.1039/C5TA08603E

    Article  CAS  Google Scholar 

  29. Ressler T, Wienold J, Jentoft RE, Girgsdies F (2003) Evolution of defects in the bulk structure of MoO3 during catalytic oxidation of propene. Eur J Inorg Chem (2):301–312

  30. Dieterle M, Weinberg G, Mestl G (2002) Raman spectroscopy of molybdenum oxides. Phys Chem Chem Phys 4(5):812–821. https://doi.org/10.1039/b107012f

    Article  CAS  Google Scholar 

  31. Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV−vis spectroscopy. J Phys Chem C 113(11):4277–4285. https://doi.org/10.1021/jp8082425

    Article  CAS  Google Scholar 

  32. Adhikari S, Sarkar D (2014) Hydrothermal synthesis and electrochromism of WO3nanocuboids. RSC Adv 4(39):20145–20153. https://doi.org/10.1039/C4RA00023D

    Article  CAS  Google Scholar 

  33. Delalat F, Ranjbar M, Salamati H (2016) Blue colloidal nanoparticles of molybdenum oxide by simple anodizing method: decolorization by PdCl 2 and observation of in-liquid gasochromic coloration. Sol Energy Mater Sol Cells 144:165–172. https://doi.org/10.1016/j.solmat.2015.08.038

    Article  CAS  Google Scholar 

  34. Ranjba M, Delalat F, Salamati H (2017) Molybdenum oxide nanosheets prepared by an anodizing-exfoliation process and observation of photochromic properties. Appl Surf Sci 396:1752–1759. https://doi.org/10.1016/j.apsusc.2016.11.225

    Article  CAS  Google Scholar 

  35. Yao J, Yang Y, Loo B (1998) Enhancement of photochromism and electrochromism in MoO3/Au and MoO3/Pt thin films. J Phys Chem B 102(11):1856–1860. https://doi.org/10.1021/jp972217u

    Article  CAS  Google Scholar 

  36. Cheng H, Qian X, Kuwahara Y, Mori K, Yamashita H (2015) A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions. Adv Mater 27(31):4616–4621. https://doi.org/10.1002/adma.201501172

    Article  CAS  PubMed  Google Scholar 

  37. Li N, Li Y, Sun G, Zhou Y, Ji S, Yao H, Cao X, Bao S, Jin P (2017) Enhanced photochromic modulation efficiency: a novel plasmonic molybdenum oxide hybrid. Nano 9(24):8298–8304

    Article  CAS  PubMed  Google Scholar 

  38. Angiola M, Alsaif MM, Kalantar-zadeh K, Wisitsoraat A, Wlodarski W, Martucci A (2015) Optical hydrogen sensing based on hybrid 2D MoO 3 /Au nanoparticles. Proc Eng 120:1141–1144. https://doi.org/10.1016/j.proeng.2015.08.830

    Article  CAS  Google Scholar 

  39. Chen H, Xu N, Deng S, Lu D, Li Z, Zhou J, Chen J (2007) Gasochromic effect and relative mechanism of WO3 nanowire films. Nanotechnology 18(20):6. https://doi.org/10.1088/0957-4484/18/20/205701

    Article  CAS  Google Scholar 

  40. Georg A, Graf W, Neumann R, Wittwer V (2000) Mechanism of the gasochromic coloration of porous WO3 films. Solid State Ionics 127(3-4):319–328. https://doi.org/10.1016/S0167-2738(99)00273-8

    Article  CAS  Google Scholar 

  41. Lee SH, Cheong HM, Liu P, Smith D, Tracy CE, Mascarenhas A, Roland Pitts J, Deb SK (2001) Raman spectroscopic studies of gasochromic a-WO3 thin films. Electrochim Acta 46(13-14):1995–1999. https://doi.org/10.1016/S0013-4686(01)00379-6

    Article  CAS  Google Scholar 

  42. Wittwer V, Datz M, Ell J, Georg A, Graf W, Walze G (2004) Gasochromic windows. Sol Energy Mater Sol Cells 84(1-4):305–314. https://doi.org/10.1016/j.solmat.2004.01.040

    Article  CAS  Google Scholar 

  43. Deng X, Quek SY, Biener MM, Biener J, Kang DH, Schalek R, Kaxiras E, Friend CM (2008) Selective thermal reduction of single-layer MoO3 nanostructures on Au(111). Surf Sci 602(6):1166–1174. https://doi.org/10.1016/j.susc.2008.01.014

    Article  CAS  Google Scholar 

  44. He T, Ma Y, Cao Y, Yin Y, Yang W, Yao J (2001) Enhanced visible-light coloration and its mechanism of MoO3 thin films by Au nanoparticles. Appl Surf Sci 180(3-4):336–340. https://doi.org/10.1016/S0169-4332(01)00370-1

    Article  CAS  Google Scholar 

  45. Karuppasamy L, Chen CY, Anandan S, Wu JJ (2017) High index surfaces of Au-nanocrystals supported on one-dimensional MoO 3 -nanorod as a bi-functional electrocatalyst for ethanol oxidation and oxygen reduction. Electrochim Acta 246:75–88. https://doi.org/10.1016/j.electacta.2017.06.040

    Article  CAS  Google Scholar 

  46. Pan H, Zuo L, Fu W, Fan C, Andreasen B, Jiang X, Norrman K, Krebs FC, Chen H (2013) Organic Electronics: physics, materials, applications. 14:797–803

  47. Tu AG, Zhou X (2010) OLEDs with Au/MoO3 hole injection layer. Faguang Xuebao/Chin J Luminescence 31(2):157–161

  48. Tan X, Wang L, Cheng C, Yan X, Shen B, Zhang J (2016) Plasmonic MoO3−x@MoO3nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem Commun 52(14):2893–2896. https://doi.org/10.1039/C5CC10020H

    Article  CAS  Google Scholar 

  49. Yan W, Petkov V, Mahurin SM, Overbury SH, Dai S (2005) Powder XRD analysis and catalysis characterization of ultra-small gold nanoparticles deposited on titania-modified SBA-15. Catal Commun 6(6):404–408. https://doi.org/10.1016/j.catcom.2005.04.004

    Article  CAS  Google Scholar 

  50. Chithambararaj A, Bose AC (2011) Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3nanocrystals of one dimensional structure. Beilstein J Nanotechnol 2:585–592. https://doi.org/10.3762/bjnano.2.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang Q, Hu S, Zhuang J, Wang X (2012) MoO3-x-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chem Eur J 18(48):15283–15287. https://doi.org/10.1002/chem.201202630

    Article  CAS  PubMed  Google Scholar 

  52. Rouhani M, Foo YL, Hobley J, Pan J, Subramanian GS, Yu X, Rusydi A, Gorelik S (2013) Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations. Appl Surf Sci 273:150–158. https://doi.org/10.1016/j.apsusc.2013.01.218

    Article  CAS  Google Scholar 

  53. Ahmad MZ, Golovko VB, Adnan RH, Abu Bakar F, Ruzicka J-Y, Anderson DP, Andersson GG, Wlodarski W (2013) Hydrogen sensing using gold nanoclusters supported on tungsten trioxide thin films. Int J Hydrog Energy 38(29):12865–12877. https://doi.org/10.1016/j.ijhydene.2013.07.089

    Article  CAS  Google Scholar 

  54. Shakir I, Shahid M, Kang DJ (2010) MoO3 and Cu0.33MoO3 nanorods for unprecedented UV/Visible light photocatalysis. Chem Commun 46(24):4324–4326. https://doi.org/10.1039/c000003e

    Article  CAS  Google Scholar 

  55. Lim B, Camargo PH, Xia Y (2008) Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4with poly(vinyl pyrrolidone). Langmuir 24(18):10437–10442. https://doi.org/10.1021/la801803z

    Article  CAS  PubMed  Google Scholar 

  56. Anbananthan N, Nagaraja Rao K, Venkatesan VK (1994) Cyclic voltammetric investigations of the reduction of Mo(VI) to Mo(IV) in 1 M sulphuric acid. J Electroanal Chem 374(1-2):207–214. https://doi.org/10.1016/0022-0728(94)03356-0

    Article  CAS  Google Scholar 

  57. Mendoza-Sánchez B, Brousse T, Ramirez-Castro C, Nicolosi V, Grant PS (2013) An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochim Acta 91:253–260. https://doi.org/10.1016/j.electacta.2012.11.127

    Article  CAS  Google Scholar 

  58. Patil RS, Uplane MD, Patil PS (2006) Structural and optical properties of electrodeposited molybdenum oxide thin films. Appl Surf Sci 252(23):8050–8056. https://doi.org/10.1016/j.apsusc.2005.10.016

    Article  CAS  Google Scholar 

  59. Castillero P, Rico-Gavira V, López-Santos C, Barranco A, Pérez-Dieste V, Escudero C, Espinós JP, González-Elipe AR (2017) Formation of subsurface W5+species in gasochromic Pt/WO3 thin films exposed to hydrogen. J Phys Chem C 121(29):15719–15727. https://doi.org/10.1021/acs.jpcc.7b03385

    Article  CAS  Google Scholar 

  60. Luther JM, Jain PK, Ewers T, Alivisatos AP (2011) Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater 10(5):361–366

    Article  CAS  PubMed  Google Scholar 

  61. Naik GV, Kim J, Boltasseva A (2011) Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Optical Mater Express 1(6):1090–1099. https://doi.org/10.1364/OME.1.001090

    Article  CAS  Google Scholar 

  62. Manthiram K, Alivisatos AP (2012) Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J Am Chem Soc 134(9):3995–3998. https://doi.org/10.1021/ja211363w

    Article  CAS  PubMed  Google Scholar 

  63. Chen Y-H, Franzreb M, Lin R-H, Chen L-L, Chang C-Y, Yu Y-H, Chiang P-C (2009) Platinum-doped TiO2/magnetic poly(methyl methacrylate) microspheres as a novel photocatalyst. Ind Eng Chem Res 48(16):7616–7623. https://doi.org/10.1021/ie900509t

    Article  CAS  Google Scholar 

  64. Jiang J, Liu J, Peng S, Qian D, Luo D, Wang Q, Tian Z, Liu Y (2013) Facile synthesis of α-MoO3 nanobelts and their pseudocapacitive behavior in an aqueous Li2SO4 solution. J Mater Chem A 1(7):2588–2594. https://doi.org/10.1039/c2ta01120d

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ranjbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M.A., Ranjbar, M. Plasmonic Au-MoO3 Colloidal Nanoparticles by Reduction of HAuCl4 by Blue MoOx Nanosheets and Observation of the Gasochromic Property. Plasmonics 13, 1897–1906 (2018). https://doi.org/10.1007/s11468-018-0704-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0704-8

Keywords

Navigation