Skip to main content
Log in

A Compact Design of Multiband Terahertz Metamaterial Absorber with Frequency and Polarization Tunability

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A new and simple design of quad-band metamaterial absorber for terahertz frequency has been proposed. The unit cell of the absorber is composed of a top metallic patch having H-shaped slot and a ground metallic plane, both separated by a dielectric layer. The proposed design is capable of providing four distinct absorption peaks over at 0.81, 1.98, 3.25, and 3.50 THz. Our design is a step ahead of the previously proposed terahertz absorbers for its simplistic design approach which removes the fabrication difficulty. Interestingly, rather placing multiple resonators in a single unit cell, we able to accommodate multiple orders of resonances in the proposed design using only a single metallic structure to achieve multiband absorbance. The sensing performance of the absorber in terms of surrounding index is also analyzed. Moreover, we have shown how the proposed structure can be easily converted into a frequency tunable absorber using a simple stub without changing the overall geometry of the absorber. This fast and easy frequency tunability feature is an additional advantage over the simple design of the structure. Also, we lead our work to its upgradation into a polarization tunable absorber where the absorption frequencies are controllable by the polarization of the incident light. The vibrant design of the proposed absorber is expected to find application in detection, imaging, radar cross-section (RCS) reduction, and sensing-related activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Landy N, Sajuyigbe S, Mock J, Smith D, Padilla W (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20). https://doi.org/10.1103/PhysRevLett.100.207402

  2. Khuyen B, Tung B, Yoo Y, Kim Y, Kim K, Chen L et al (2017) Miniaturization for ultrathin metamaterial perfect absorber in the VHF band. Sci Rep 7:45151. https://doi.org/10.1038/srep45151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen J, Huang X, Zerihun G, Hu Z, Wang S, Wang G, Hu X, Liu M (2015) Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances. J Electron Mater 44(11):4269–4274. https://doi.org/10.1007/s11664-015-3951-x

    Article  CAS  Google Scholar 

  4. Ghosh S, Srivastava K (2017) Polarization-insensitive dual-band switchable absorber with independent switching. IEEE Antennas Wirel Propag Lett 16:1687–1690. https://doi.org/10.1109/LAWP.2017.2665966

    Article  Google Scholar 

  5. Hu D, Wang H, Tang Z, Zhang X, Zhu Q (2016) Design of four-band terahertz perfect absorber based on a simple #-shaped metamaterial resonator. Appl Phys A 122(9). https://doi.org/10.1007/s00339-016-0357-4

  6. Wen Y, Ma W, Bailey J, Matmon G, Yu X (2015) Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption. IEEE Trans Terahertz Sci Technol 5(3):406–411. https://doi.org/10.1109/TTHZ.2015.2401392

    Article  Google Scholar 

  7. Wang B (2017) Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE J Sel Top Quantum Electron 23(4):1–7

    Google Scholar 

  8. Grant J, Ma Y, Saha S, Khalid A, Cumming D (2011) Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett 36(17):3476–3478. https://doi.org/10.1364/OL.36.003476

    Article  CAS  PubMed  Google Scholar 

  9. Ding F, Cui Y, Ge X, Jin Y, He S (2012) Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 100(10):103506. https://doi.org/10.1063/1.3692178

    Article  CAS  Google Scholar 

  10. Park J, Van Tuong P, Rhee J, Kim K, Jang W, Choi E et al (2013) Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express 21(8):9691–9702. https://doi.org/10.1364/OE.21.009691

    Article  PubMed  Google Scholar 

  11. Wang B, Zhai X, Wang G, Huang W, Wang L (2015) Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J 7(1):1–8

    Google Scholar 

  12. Ma Y, Chen Q, Grant J, Saha S, Khalid A, Cumming D (2011) A terahertz polarization insensitive dual band metamaterial absorber. Opt Lett 36(6):945–947. https://doi.org/10.1364/OL.36.000945

    Article  PubMed  Google Scholar 

  13. Shen X, Cui T, Zhao J, Ma H, Jiang W, Li H (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19(10):9401–9407. https://doi.org/10.1364/OE.19.009401

    Article  CAS  PubMed  Google Scholar 

  14. Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Jun Cui T (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett 101(15):154102. https://doi.org/10.1063/1.4757879

    Article  CAS  Google Scholar 

  15. Watts C, Liu X, Padilla W (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24(23):OP98–OP120. https://doi.org/10.1002/adma.201200674

    Article  CAS  PubMed  Google Scholar 

  16. Qi-wei Ye, Hai Lin, Xiao-qin Chen, & He-lin Yang (2011) A tunable metamaterial absorber made by micro-gaps structures. Proceedings of 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference

  17. Zhu B, Huang C, Feng Y, Zhao J, Jiang T (2010) Dual band switchable metamaterial electromagnetic absorber. Prog Electromagn Res B 24:121–129. https://doi.org/10.2528/PIERB10070802

    Article  Google Scholar 

  18. Huang Y, Tian Y, Wen G, Zhu W (2013) Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration. J Opt 15(5):055104. https://doi.org/10.1088/2040-8978/15/5/055104

    Article  CAS  Google Scholar 

  19. Zhao Y, Hao Q, Ma Y, Lu M, Zhang B, Lapsley M, Khoo IC, Jun Huang T (2012) Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array. Appl Phys Lett 100(5):053119. https://doi.org/10.1063/1.3681808

    Article  CAS  Google Scholar 

  20. Shrekenhamer D, Chen W, Padilla W (2013) Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110(17). https://doi.org/10.1103/PhysRevLett.110.177403

  21. Wang B, Wang L, Wang G, Huang W, Li X, Zhai X (2014) Frequency continuous tunable terahertz metamaterial absorber. J Lightwave Technol 32(6):1183–1189. https://doi.org/10.1109/JLT.2014.2300094

    Article  Google Scholar 

  22. Liu X, Tyler T, Starr T, Starr A, Jokerst N, Padilla W (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107(4). https://doi.org/10.1103/PhysRevLett.107.045901

  23. Wang B, Wang G, Zhai X, Wang L (2015) Polarization tunable terahertz metamaterial absorber. IEEE Photonics J 7(4):1–7

    Google Scholar 

  24. Meng H, Wang L, Zhai X, Liu G, Xia S (2017) A simple design of a multi-band terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap. Plasmonics. https://doi.org/10.1007/s11468-017-0509-1

    Article  CAS  Google Scholar 

  25. Wang B, Wang G (2017) New type design of the triple-band and five-band metamaterial absorbers at terahertz frequency. Plasmonics. https://doi.org/10.1007/s11468-016-0491-z

    Article  CAS  Google Scholar 

  26. Huang L, Chowdhury D, Ramani S, Reiten M, Luo S, Azad A et al (2012) Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Appl Phys Lett 101(10):101102. https://doi.org/10.1063/1.4749823

    Article  CAS  Google Scholar 

  27. Chaurasiya D, Ghosh S, Bhattacharyya S, Srivastava K (2015) An ultrathin quad-band polarization-insensitive wide-angle metamaterial absorber. Microw Opt Technol Lett 57(3):697–702. https://doi.org/10.1002/mop.28928

    Article  Google Scholar 

  28. Lee Y, Chen H, Xu Q, Wang J (2011) Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type. J Phys Chem C 115(16):7997–8004. https://doi.org/10.1021/jp202574r

    Article  CAS  Google Scholar 

  29. Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C, Economou E (2007) Left-handed metamaterials: the fishnet structure and its variations. Phys Rev B 75(23). https://doi.org/10.1103/PhysRevB.75.235114

  30. Yu X, Shi L, Han D, Zi J, Braun P (2010) High quality factor metallodielectric hybrid plasmonic-photonic crystals. Adv Funct Mater 20(12):1910–1916. https://doi.org/10.1002/adfm.201000135

    Article  CAS  Google Scholar 

  31. Yuan H, Zhu B, Feng Y (2015) A frequency and bandwidth tunable metamaterial absorber in x-band. J Appl Phys 117(17):173103. https://doi.org/10.1063/1.4919753

    Article  CAS  Google Scholar 

  32. Zhong J, Huang Y, Wen G, Sun H, Wang P, Gordon O (2012) Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs. Appl Phys A 108(2):329–335. https://doi.org/10.1007/s00339-012-6989-0

    Article  CAS  Google Scholar 

  33. Fu Y, Liu A, Zhu W, Zhang X, Tsai D, Zhang J et al (2011) A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators. Adv Funct Mater 21(18):3589–3594. https://doi.org/10.1002/adfm.201101087

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For research support, D. Mitra acknowledges the Visvesvaraya Young Faculty research fellowship award, under MeitY, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Chandra Bakshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakshi, S.C., Mitra, D. & Minz, L. A Compact Design of Multiband Terahertz Metamaterial Absorber with Frequency and Polarization Tunability. Plasmonics 13, 1843–1852 (2018). https://doi.org/10.1007/s11468-018-0698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0698-2

Keywords

Navigation